Arsenic (As) and lead (Pb) are environmental pollutants found in common sites linked to similar adverse health effects. This study determined driving factors of neurotoxicity on the developing cerebral vasculature with As and Pb mixture exposures. Cerebral vascular toxicity was evaluated at mixture concentrations of As and Pb representing human exposures levels (10 or 100 parts per billion; ppb; µg/L) in developing zebrafish by assessing behavior, morphology, and gene expression. In the visual motor response assay, hyperactivity was observed in all three outcomes in dark phases in larvae with exposure (1-120 h post fertilization, hpf) to 10 ppb As, 10 ppb Pb, or 10 ppb mix treatment. Time spent moving exhibited hyperactivity in dark phases for 100 ppb As and 100 ppb mix treatment groups only. A decreased brain length and ratio of brain length to total length in the 10 ppb mix group was measured with no alterations in other treatment groups or other endpoints (i.e., total larval length, head length, or head width). Alternatively, measurements of cerebral vasculature in the midbrain and cerebellum uncovered decreased total vascularization at 72 hpf in all treatment groups in the mesencephalon and in all treatment groups, except the 100 ppb Pb and 10 ppb As groups, in the cerebellum. In addition, decreased sprouting and branching occurred in the mesencephalon, while only decreased branching was measured in the cerebellum. The 10 ppb Pb group showed several cerebral vasculature modifications that were aligned with a specific gene expression alteration pattern different from other treatment groups. Additionally, the 100 ppb As group drove gene alterations, along with several other endpoints, for changes observed in the 100 ppb mix treatment group. Perturbations assessed in this study displayed non-linear concentration-responses, which are important to consider in environmental health outcomes for As and Pb neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435665 | PMC |
http://dx.doi.org/10.3390/toxics12090624 | DOI Listing |
Mikrochim Acta
January 2025
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.
View Article and Find Full Text PDFToxics
November 2024
Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
Growing concerns about the health risks of melamine adulteration in food products highlight the urgent need for reliable detection methods. However, the long-term effects of chronic low-level melamine exposure remain inadequately explored. This study introduces THE ONE InstantCare platform, a portable immunoassay analyzer integrating a SpectroChip-based spectral processing unit (SPU) with lateral flow immunoassay (LFIA) for sensitive and accurate quantification of melamine in human urine.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:
Plant Physiol Biochem
January 2025
Department of Agronomy, UAS, GKVK, Bengaluru, India.
Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute for Physical and Information Technologies (ITEFI-CSIC), 28006 Madrid, Spain.
Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!