It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL). The PTE was immobilized on PVDF membrane by a covalent bond with the same procedure used in earlier studies to attribute changes in enzyme activity solely to the wettability properties (and not to the material chemistry). The activity of the PTE immobilized on the PVDF membrane hydrophilized with AL was 50% higher than that of the enzyme immobilized on the PVDF hydrophobic membrane. Further improvements of the membrane structure tailored for the development of a biocatalytic membrane reactor (BMR) were also promoted. In particular, the performance of the BMR was studied as a function of the thickness of the membrane, which allowed us to modulate the residence time into the enzyme-loaded membrane pores while maintaining the flow rate through the pores at a constant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434455PMC
http://dx.doi.org/10.3390/membranes14090186DOI Listing

Publication Analysis

Top Keywords

pvdf membrane
12
immobilized pvdf
12
membrane
11
biocatalytic membrane
8
membrane reactor
8
enzyme activity
8
enzyme immobilized
8
membrane hydrophilized
8
pte immobilized
8
enzyme
5

Similar Publications

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.

View Article and Find Full Text PDF

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!