Metabolomic and Physiological Analyses Reveal the Effects of Different Storage Conditions on Hu Seeds.

Metabolites

Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.

Published: September 2024

Backgrounds: Hu is a deciduous tree in the family, and it is classified as a Class II endangered plant in China. Seed storage technology is an effective means of conserving germplasm resources, but the effects of different storage conditions on the quality and associated metabolism of seeds remain unclear. This study analyzed the physiological and metabolic characteristics of seeds under four storage conditions.

Results: Our findings demonstrate that reducing seed moisture content and storage temperature effectively prolongs storage life. Seeds stored under that condition exhibited higher internal nutrient levels, lower endogenous abscisic acid (ABA) hormone levels, and elevated gibberellic acid (GA) levels. Additionally, 335 metabolites were identified under four different storage conditions. The analysis indicates that seeds extend seed longevity and maintain cellular structural stability mainly by regulating the changes in metabolites related to lipid, amino acid, carbohydrate, and carotenoid metabolic pathways under the storage conditions of a low temperature and low seed moisture.

Conclusions: These findings provide new insights at the physiological and metabolic levels into how these storage conditions extend seed longevity while also offering effective storage strategies for preserving the germplasm resources of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434619PMC
http://dx.doi.org/10.3390/metabo14090503DOI Listing

Publication Analysis

Top Keywords

storage conditions
20
storage
10
effects storage
8
germplasm resources
8
physiological metabolic
8
extend seed
8
seed longevity
8
conditions
5
seeds
5
seed
5

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

This study evaluated the inhibitory efficacy of NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!