Convolutional Neural Network-Machine Learning Model: Hybrid Model for Meningioma Tumour and Healthy Brain Classification.

J Imaging

Department of Automatic Control and Electrical Engineering, Faculty of Automation, Computers, Electrical, Engineering and Electronics, "Dunarea de Jos" University of Galati, 800146 Galati, Romania.

Published: September 2024

This paper presents a hybrid study of convolutional neural networks (CNNs), machine learning (ML), and transfer learning (TL) in the context of brain magnetic resonance imaging (MRI). The anatomy of the brain is very complex; inside the skull, a brain tumour can form in any part. With MRI technology, cross-sectional images are generated, and radiologists can detect the abnormalities. When the size of the tumour is very small, it is undetectable to the human visual system, necessitating alternative analysis using AI tools. As is widely known, CNNs explore the structure of an image and provide features on the SoftMax fully connected (SFC) layer, and the classification of the items that belong to the input classes is established. Two comparison studies for the classification of meningioma tumours and healthy brains are presented in this paper: (i) classifying MRI images using an original CNN and two pre-trained CNNs, DenseNet169 and EfficientNetV2B0; (ii) determining which CNN and ML combination yields the most accurate classification when SoftMax is replaced with three ML models; in this context, Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) were proposed. In a binary classification of tumours and healthy brains, the EfficientNetB0-SVM combination shows an accuracy of 99.5% on the test dataset. A generalisation of the results was performed, and overfitting was prevented by using the bagging ensemble method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433632PMC
http://dx.doi.org/10.3390/jimaging10090235DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
tumours healthy
8
healthy brains
8
classification
5
neural network-machine
4
network-machine learning
4
learning model
4
model hybrid
4
hybrid model
4
model meningioma
4

Similar Publications

Convolutional Neural Networks (CNNs) have achieved remarkable segmentation accuracy in medical image segmentation tasks. However, the Vision Transformer (ViT) model, with its capability of extracting global information, offers a significant advantage in contextual information compared to the limited receptive field of convolutional kernels in CNNs. Despite this, ViT models struggle to fully detect and extract high-frequency signals, such as textures and boundaries, in medical images.

View Article and Find Full Text PDF

Identification and diagnosis of tobacco diseases are prerequisites for the scientific prevention and control of these ailments. To address the limitations of traditional methods, such as weak generalization and sensitivity to noise in segmenting tobacco leaf lesions, this study focused on four tobacco diseases: angular leaf spot, brown spot, wildfire disease, and frog eye disease. Building upon the Unet architecture, we developed the Multi-scale Residual Dilated Segmentation Model (MD-Unet) by enhancing the feature extraction module and integrating attention mechanisms.

View Article and Find Full Text PDF

Background: Endoscopic diagnosis of early gastric cancer (EGC) is a challenge. It is not clear whether deep convolutional neural network (DCNN) model could improve the endoscopists' diagnostic performance.

Methods: We established a DCNN-assisted system and found that accuracy of diagnosis is higher than endoscopists.

View Article and Find Full Text PDF

Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualisation phase and a neural network-based classification phase.

View Article and Find Full Text PDF

Non-destructive prediction and pixel-level visualization of polysaccharide-based properties in ancient paper using SWNIR hyperspectral imaging and machine learning.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.

Ancient documents and artworks are invaluable cultural heritage artworks that require careful preservation. Traditional methods for assessing their physical and chemical properties-such as tearing index, tensile index, water absorption, and pH-are often destructive, risking irreversible damage. This study introduces a novel, non-destructive approach using Short-Wave Near-Infrared (SWNIR) hyperspectral imaging (HSI) combined with advanced machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!