(pinworm) infections are a significant global health issue, affecting children predominantly in environments like schools and daycares. Traditional diagnosis using the scotch tape technique involves examining eggs under a microscope. This method is time-consuming and depends heavily on the examiner's expertise. To improve this, convolutional neural networks (CNNs) have been used to automate the detection of pinworm eggs from microscopic images. In our study, we enhanced egg detection using a CNN benchmarked against leading models. We digitized and augmented 40,000 images of eggs (class 1) and artifacts (class 0) for comprehensive training, using an 80:20 training-validation and a five-fold cross-validation. The proposed CNN model showed limited initial performance but achieved 90.0% accuracy, precision, recall, and F1-score after data augmentation. It also demonstrated improved stability with an ROC-AUC metric increase from 0.77 to 0.97. Despite its smaller file size, our CNN model performed comparably to larger models. Notably, the Xception model achieved 99.0% accuracy, precision, recall, and F1-score. These findings highlight the effectiveness of data augmentation and advanced CNN architectures in improving diagnostic accuracy and efficiency for infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433018 | PMC |
http://dx.doi.org/10.3390/jimaging10090212 | DOI Listing |
Integr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Artificial Intelligence Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.
View Article and Find Full Text PDFAnal Methods
January 2025
Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.
The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.
View Article and Find Full Text PDFTaiwan J Ophthalmol
November 2024
Sirindhorn International Institute of Technology, Thammasat University, Bangkok, Thailand.
Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!