Development of a Machine Learning Model for the Classification of Egg.

J Imaging

Medical Innovation and Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.

Published: August 2024

(pinworm) infections are a significant global health issue, affecting children predominantly in environments like schools and daycares. Traditional diagnosis using the scotch tape technique involves examining eggs under a microscope. This method is time-consuming and depends heavily on the examiner's expertise. To improve this, convolutional neural networks (CNNs) have been used to automate the detection of pinworm eggs from microscopic images. In our study, we enhanced egg detection using a CNN benchmarked against leading models. We digitized and augmented 40,000 images of eggs (class 1) and artifacts (class 0) for comprehensive training, using an 80:20 training-validation and a five-fold cross-validation. The proposed CNN model showed limited initial performance but achieved 90.0% accuracy, precision, recall, and F1-score after data augmentation. It also demonstrated improved stability with an ROC-AUC metric increase from 0.77 to 0.97. Despite its smaller file size, our CNN model performed comparably to larger models. Notably, the Xception model achieved 99.0% accuracy, precision, recall, and F1-score. These findings highlight the effectiveness of data augmentation and advanced CNN architectures in improving diagnostic accuracy and efficiency for infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433018PMC
http://dx.doi.org/10.3390/jimaging10090212DOI Listing

Publication Analysis

Top Keywords

cnn model
8
accuracy precision
8
precision recall
8
recall f1-score
8
data augmentation
8
development machine
4
machine learning
4
model
4
learning model
4
model classification
4

Similar Publications

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.

View Article and Find Full Text PDF

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns.

Anal Methods

January 2025

Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!