Genome Analysis of a Potential Novel Species Secreting pH- and Thermo-Stable Alginate Lyase and Its Application in Producing Alginate Oligosaccharides.

Mar Drugs

Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Published: September 2024

AI Article Synopsis

  • * The genome of strain HB236076 consists of two chromosomes and contains over 3,400 genes, including numerous carbohydrate-active enzymes, which suggests its capability to produce alginate lyases that perform well across varying temperatures and pH levels.
  • * The alginate lyase produced by HB236076 exhibits strong activity at 50 °C and pH 7.0, remains stable across a broad range of conditions, and can generate antimicrobial disaccharides and trisaccharides,

Article Abstract

Alginate lyase is an attractive biocatalyst that can specifically degrade alginate to produce oligosaccharides, showing great potential for industrial and medicinal applications. Herein, an alginate-degrading strain HB236076 was isolated from sp. in Qionghai, Hainan, China. The low 16S rRNA gene sequence identity (<98.4%), ANI value (<71.9%), and dDDH value (<23.9%) clearly indicated that the isolate represented a potential novel species of the genus . The genome contained two chromosomes with lengths of 3,007,948 bp and 874,895 bp, respectively, totaling 3,882,843 bp with a G+C content of 46.5%. Among 3482 genes, 3332 protein-coding genes, 116 tRNA, and 34 rRNA sequences were predicted. Analysis of the amino acid sequences showed that the strain encoded 73 carbohydrate-active enzymes (CAZymes), predicting seven PL7 (Alg1-7) and two PL17 family (Alg8, 9) alginate lyases. The extracellular alginate lyase from strain HB236076 showed the maximum activity at 50 °C and pH 7.0, with over 90% activity measured in the range of 30-60 °C and pH 6.0-10.0, exhibiting a wide range of temperature and pH activities. The enzyme also remained at more than 90% of the original activity at a wide pH range (3.0-9.0) and temperature below 50 °C for more than 2 h, demonstrating significant thermal and pH stabilities. Fe had a good promoting effect on the alginate lyase activity at 10 mM, increasing by 3.5 times. Thin layer chromatography (TLC) and electrospray ionization mass spectrometry (ESI-MS) analyses suggested that alginate lyase in fermentation broth could catalyze sodium alginate to produce disaccharides and trisaccharides, which showed antimicrobial activity against , , , , and . This research provided extended insights into the production mechanism of alginate lyase from sp. HB236076, which was beneficial for further application in the preparation of pH-stable and thermo-stable alginate lyase and alginate oligosaccharides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433491PMC
http://dx.doi.org/10.3390/md22090414DOI Listing

Publication Analysis

Top Keywords

alginate lyase
8
genome analysis
4
analysis potential
4
potential novel
4
novel species
4
species secreting
4
secreting ph-
4
ph- thermo-stable
4
alginate
4
thermo-stable alginate
4

Similar Publications

Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers.

J Funct Biomater

January 2025

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations.

View Article and Find Full Text PDF

Directed Evolution of an Alginate Lyase from sp. for Seaweed Fertilizer Production from the Brown Seaweed .

J Agric Food Chem

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.

An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.

View Article and Find Full Text PDF

A bifunctional endolytic alginate lyase with two different lyase catalytic domains from sp. H204.

Front Microbiol

December 2024

Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

Microbial enzymes as powerful natural anti-biofilm candidates.

Microb Cell Fact

December 2024

Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!