We report the synthesis of novel cobalt complexes-based catalysts designed for the oscillatory Belousov-Zhabotinsky (BZ) reaction. For the first time, we introduce cobalt complex-based self-oscillating gels that demonstrate autonomous color oscillations within a BZ reagent solution, functioning without the need for any external stimuli. We created acrylamide-based self-oscillating gels containing immobilized tris(2,2'-bipyridine)cobalt(II) or tris(1,10-phenanthroline)cobalt(II) complexes and gels containing covalently bound (5-acrylamido-1,10-phenanthroline)bis(2,2'-bipyridine)cobalt(II), (5-acrylamido-1,10-phenanthroline)bis(1,10-phenanthroline) cobalt(II), or tris(5-acrylamido-1,10-phenanthroline)cobalt(II) complexes. When the BZ reaction takes place within the gels, it results in the observation of moving chemical waves and reversible color changes. We believe that Co-complexes-based self-oscillating gels have potential applications in the design of soft actuators and chemical devices for signal processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431249 | PMC |
http://dx.doi.org/10.3390/gels10090552 | DOI Listing |
Gels
December 2024
Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia.
In the original publication [...
View Article and Find Full Text PDFGels
November 2024
Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia.
For the first time, we introduced chemomechanical self-oscillating poly(N-isopropylacrylamide)-based gels containing catalytically active Fe or Ru complexes both as crosslinkers and as pendant groups. All the obtained gels exhibited sustained autonomous oscillations driven by the Belousov-Zhabotinsky reaction within their structure. The Ru complex-based gels also demonstrated pronounced chemomechanical oscillations; they periodically swelled/shrunk when the catalyst was reduced/oxidized.
View Article and Find Full Text PDFGels
August 2024
Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia.
We report the synthesis of novel cobalt complexes-based catalysts designed for the oscillatory Belousov-Zhabotinsky (BZ) reaction. For the first time, we introduce cobalt complex-based self-oscillating gels that demonstrate autonomous color oscillations within a BZ reagent solution, functioning without the need for any external stimuli. We created acrylamide-based self-oscillating gels containing immobilized tris(2,2'-bipyridine)cobalt(II) or tris(1,10-phenanthroline)cobalt(II) complexes and gels containing covalently bound (5-acrylamido-1,10-phenanthroline)bis(2,2'-bipyridine)cobalt(II), (5-acrylamido-1,10-phenanthroline)bis(1,10-phenanthroline) cobalt(II), or tris(5-acrylamido-1,10-phenanthroline)cobalt(II) complexes.
View Article and Find Full Text PDFMacromol Rapid Commun
July 2024
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom.
Smart polymer materials that are nonliving yet exhibit complex "life-like" or biomimetic behaviors have been the focus of intensive research over the past decades, in the quest to broaden our understanding of how living systems function under nonequilibrium conditions. Identification of how chemical and mechanical coupling can generate resonance and entrainment with other cells or external environment is an important research question. We prepared Belousov-Zhabotinsky (BZ) self-oscillating hydrogels which convert chemical energy to mechanical oscillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!