Forced Friends: Why the Free Energy Principle Is Not the New Hamilton's Principle.

Entropy (Basel)

Center for Research in Cognition & Neurosciences, Université libre de Bruxelles, B-1050 Brussels, Belgium.

Published: September 2024

The claim that the free energy principle is somehow related to Hamilton's principle in statistical mechanics is ubiquitous throughout the subject literature. However, the exact nature of this relationship remains unclear. According to some sources, the free energy principle is merely similar to Hamilton's principle of stationary action; others claim that it is either analogous or equivalent to it, while yet another part of the literature espouses the claim that it is a version of Hamilton's principle. In this article, we aim to clarify the nature of the relationship between the two principles by investigating the two most likely interpretations of the claims that can be found in the subject literature. According to the strong interpretation, the two principles are equivalent and apply to the same subset of physical phenomena; according to the weak interpretation, the two principles are merely analogous to each other by virtue of their similar formal structures. As we show, adopting the stronger reading would lead to a dilemma that is untenable for the proponents of the free energy principle, thus supporting the adoption of the weaker reading for the relationship between the two constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431360PMC
http://dx.doi.org/10.3390/e26090797DOI Listing

Publication Analysis

Top Keywords

free energy
16
energy principle
16
hamilton's principle
16
principle hamilton's
12
principle
8
subject literature
8
nature relationship
8
interpretation principles
8
forced friends
4
free
4

Similar Publications

Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE.

View Article and Find Full Text PDF

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.

View Article and Find Full Text PDF

Unfolding of von Willebrand Factor Type D Like Domains Promotes Mucin Adhesion.

Nano Lett

January 2025

Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.

Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.

View Article and Find Full Text PDF

Transgene-free genome editing in poplar.

New Phytol

January 2025

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.

Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!