The representation of intelligence is achieved by patterns of connections among neurons in brains and machines. Brains grow continuously, such that their patterns of connections develop through activity-dependent specification, with the continuing ontogenesis of individual experience. The theory of active inference proposes that the developmental organization of sentient systems reflects general processes of informatic self-evidencing, through the minimization of free energy. We interpret this theory to imply that the mind may be described in information terms that are not dependent on a specific physical substrate. At a certain level of complexity, self-evidencing of living (self-organizing) information systems becomes hierarchical and reentrant, such that effective consciousness emerges as the consequence of a good regulator. We propose that these principles imply that an adequate reconstruction of the computational dynamics of an individual human brain/mind is possible with sufficient neuromorphic computational emulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431400 | PMC |
http://dx.doi.org/10.3390/e26090759 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!