Brushed DC motors and generators (DCMs) are extensively used in various industrial applications, including the automotive industry, where they are critical for electric vehicles (EVs) due to their high torque, power, and efficiency. Despite their advantages, DCMs are prone to premature failure due to sparking between brushes and commutators, which can lead to significant economic losses. This study proposes two approaches for determining the temporal and frequency evolution of Shannon entropy in armature current and stray flux signals. One approach indirectly achieves this through prior analysis using the Short-Time Fourier Transform (STFT), while the other applies the Stockwell Transform (S-Transform) directly. Experimental results show that increased sparking activity generates significant low-frequency harmonics, which are more pronounced compared to mid and high-frequency ranges, leading to a substantial rise in system entropy. This finding enables the introduction of fault-severity indicators or Key Performance Indicators (KPIs) that relate the current condition of commutation quality to a baseline established under healthy conditions. The proposed technique can be used as a predictive maintenance tool to detect and assess sparking phenomena in DCMs, providing early warnings of component failure and performance degradation, thereby enhancing the reliability and availability of these machines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431812PMC
http://dx.doi.org/10.3390/e26090744DOI Listing

Publication Analysis

Top Keywords

current stray
8
stray flux
8
shannon entropy
8
flux combined
4
combined analysis
4
sparking
4
analysis sparking
4
sparking detection
4
detection motors/generators
4
motors/generators shannon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!