Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, and reduce cholesterol synthesis. They also have been demonstrated to improve prognosis in patients with various cancers, suggesting a potential anti-cancer effect of statins. However, there is no consensus on the molecular targets of statins for their anti-cancer effects. Docetaxel (DOC) is a microtubule-stabilizing agent currently used as a chemotherapeutic drug in several cancers, including lung cancer. Interestingly, the anti-cancer effects of either drug that are related to abnormal or wild-type TP53 gene have been implied. Therefore, the drug sensitivity of DOC and lovastatin in human lung cancer cells was evaluated. We found that H1355 (mutant TP53-E285K), CL1 (mutant TP53-R248W), and H1299 (TP53-null) human non-small cell lung cancer cells were more sensitive to lovastatin than A549 and H460 cells expressing wild-type TP53. Conversely, A549 and H460 cells showed higher sensitivity to DOC than H1299 and CL1 cells, as demonstrated by the MTT assay. When endogenous TP53 activity was inhibited by pifithrin-α in A549 and H460 cells, lovastatin sensitivities significantly increased, and cancer cell viabilities markedly reduced. These results indicate that TP53 status is associated with the anti-cancer effect of statins in human lung cancer cells. Mutated or null TP53 status is correlated with higher statin sensitivity. Furthermore, DOC-resistant H1299 (H1299/D8) cells showed significant sensitivity to lovastatin treatment compared to DOC-resistant A549 (A549/D16) cells, indicating a potential application of statins/chemotherapy combination therapy to control wild-type and abnormal TP53-containing human lung tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430132 | PMC |
http://dx.doi.org/10.3390/cimb46090604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!