Porcine sapelovirus (PSV) is a new pathogen that negatively impacts the pig industry in China. Affected pigs experience severe diarrhea and even death. Vaccination is used to control disease outbreaks, and sensitive diagnostic methods that can distinguish infected animals from vaccinated animals (DIVA) are essential for monitoring the effectiveness of disease control programs. Tests based on the detection of the nonstructural protein (NSP) 3AB are reliable indicators of viral replication in infected and vaccinated animals. In this study, the recombinant PSV 3AB protein was expressed by a prokaryotic expression system, and an indirect ELISA method was established. Serum samples from healthy animals, immunized animals, and infected animals were evaluated. The ELISA method identified 3AB with high sensitivity (99.78%) and specificity (100.0%), and no cross-reaction was observed with serum antibodies against porcine reproductive and respiratory syndrome virus (PRRSV), infection with classical swine fever virus (CSFV), pseudorabies virus (PRV), bovine viral diarrhea virus (BVDV), porcine epidemic diarrhea virus (PEDV), or foot-and-mouth disease virus (FMDV). The ELISA method described here can effectively distinguish infected and vaccinated animals and is an important inexpensive tool for monitoring serum and controlling PSV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429539PMC
http://dx.doi.org/10.3390/cimb46090583DOI Listing

Publication Analysis

Top Keywords

vaccinated animals
12
elisa method
12
indirect elisa
8
animals
8
nonstructural protein
8
distinguish infected
8
infected animals
8
infected vaccinated
8
diarrhea virus
8
virus
6

Similar Publications

Pseudorabies virus (PRV) is one of the most important infectious diseases which leads to significant economic losses in the global swine industry. The gE-deleted vaccine is widely used to prevent susceptible pigs from PRV infection. There is no report of the differentiation of PRV wild strain and vaccine strain by recombinase polymerase amplification (RPA) coupled with a lateral flow dipstick (LFD) method.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Background: Peste des petits ruminants (PPR) is an acute or subacute, highly contagious, and economically important, transboundary disease of small ruminants caused by Peste des petits ruminants virus (PPRV).

Objectives: The objective of this study was to determine the seroconversion rate in PPR vaccinated flock of sheep (Sekela district) and the seroprevalence of PPRV in unvaccinated flocks of sheep and goats (Yilmanadensa district).

Methods: A cross-sectional study was conducted from January to March 2022 in two selected districts of West Gojjam zone, Ethiopia.

View Article and Find Full Text PDF

Pathogenic are spirochetes that cause leptospirosis, a worldwide zoonotic disease. Leptospirosis affects humans and animals, with approximately 1 million human infections and 60,000 deaths per year. The diversity of leptospiral strains and serovars allied to the fact that pathogenesis is not yet fully understood, make the development of an effective vaccine against leptospirosis a challenge.

View Article and Find Full Text PDF

Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!