Recent studies have confirmed that melatonin and N6-methyladenosine (m6A) modification can influence bone cell differentiation and bone formation. Melatonin can also regulate a variety of biological processes through m6A modification. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) serves as a reader of m6A modification. In this study, we used the hindlimb unloading model as an animal model of bone loss induced by simulated microgravity and used 2D clinorotation to simulate a microgravity environment for cells on the ground. We found that hnRNPA2B1 was downregulated both in vitro and in vivo during simulated microgravity. Further investigations showed that hnRNPA2B1 could promote osteoblast differentiation and that overexpression of hnRNPA2B1 attenuated the suppression of osteoblast differentiation induced by simulated microgravity. We also discovered that melatonin could promote the expression of hnRNPA2B1 under simulated microgravity. Moreover, we found that promotion of osteoblast differentiation by melatonin was partially dependent on hnRNPA2B1. Therefore, this research revealed, for the first time, the role of the melatonin/hnRNPA2B1 axis in osteoblast differentiation under simulated microgravity. Targeting this axis may be a potential protective strategy against microgravity-induced bone loss and osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430354 | PMC |
http://dx.doi.org/10.3390/cimb46090572 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China. Electronic address:
Background: Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Gulhane School of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey.
Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration - and possibly the occurrence - of deep-space missions.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.
View Article and Find Full Text PDFAerosp Med Hum Perform
January 2025
Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!