AI Article Synopsis

  • Extracellular vesicles (EVs) are tiny particles released by human cells that facilitate communication between them and can carry important biological molecules like DNA and proteins.
  • In the context of bone repair, EVs play a crucial role by influencing the activities of osteoblasts (cells that build bone) and osteoclasts (cells that break down bone), thereby promoting effective bone regeneration.
  • The review looks at how EVs are formed and function in bone healing, discusses their involvement in diseases affecting bone regeneration, and suggests potential clinical uses of engineered EVs for diagnosing and treating these conditions.

Article Abstract

Extracellular vesicles (EVs) are nanoscale particles with a lipid bilayer membrane structure secreted by various cell types. Nearly all human cells secrete EVs, primarily mediating intercellular communication. In recent years, scientists have discovered that EVs can carry multiple biological cargos, such as DNA, non-coding RNAs (ncRNAs), proteins, cytokines, and lipids, and mediate intercellular signal transduction. Bone is a connective tissue with a nerve supply and high vascularization. The repair process after injury is highly complex, involving interactions among multiple cell types and biological signaling pathways. Bone regeneration consists of a series of coordinated osteoconductive and osteoinductive biological processes. As mediators of intercellular communication, EVs can promote bone regeneration by regulating osteoblast-mediated bone formation, osteoclast-mediated bone resorption, and other pathways. This review summarizes the biogenesis of EVs and the mechanisms by which EV-mediated intercellular communication promotes bone regeneration. Additionally, we focus on the research progress of EVs in various diseases related to bone regeneration. Finally, based on the above research, we explore the clinical applications of engineered EVs in the diagnosis and treatment of bone regeneration-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430372PMC
http://dx.doi.org/10.3390/cimb46090548DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
intercellular communication
12
bone
10
extracellular vesicles
8
cell types
8
evs
7
regeneration
5
role extracellular
4
vesicles bone
4
regeneration associated
4

Similar Publications

Aim: This study aimed to evaluate and compare the results of combination therapy involving bone grafting and two different resorbable collagen membranes in 1-, 2- and 3-wall infrabony defects.

Methods: A total of 174 patients with infrabony defects (≥ 7 mm periodontal probing depth) were randomized to receive deproteinized bovine bone mineral (DBBM) with either a native porcine non-crosslinked collagen membrane (N-CM, control, n = 87) or a novel porcine crosslinked collagen membrane (C-CM, test, n = 87). Clinical parameters, including periodontal probing depth (PPD), clinical attachment level (CAL), and gingival recession (GR), were recorded at baseline, 12 weeks, and 24 weeks.

View Article and Find Full Text PDF

Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity.

View Article and Find Full Text PDF

Evaluation of sticky bone in guided bone regeneration in the aesthetic area of the anterior teeth: a retrospective study.

Int J Oral Maxillofac Surg

January 2025

Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. Electronic address:

The retrospective study aimed to compare the space-maintaining effects of sticky bone (bone graft matrix enriched with injectable platelet-rich fibrin) and titanium mesh for bone augmentation in the aesthetic zone. Patients who underwent single implant placement and had type 2/4 alveolar bone defects (buccal bone wall loss is >50% of the expected implant length) were screened for inclusion in this study. The labial bone plate width was measured at 1, 3, and 5 mm below the apical implant platform on cone beam computed tomography images taken immediately and 6 months after surgery.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!