Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications. We systematically categorize the design and fabrication techniques used in preparing MOF films, including in situ growth, layer-by-layer assembly, and polymer-assisted strategies. The implications of MOF-based flexible electrochemical sensors are examined in the context of wearable devices, environmental monitoring, and healthcare diagnostics. Future research is anticipated to shift from traditional microcrystalline powder synthesis to MOF thin-film deposition, which is expected to not only enhance the performance of MOFs in flexible electronics but also improve sensing efficiency and reliability, paving the way for more robust and versatile sensor technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430114PMC
http://dx.doi.org/10.3390/bios14090420DOI Listing

Publication Analysis

Top Keywords

flexible electrochemical
20
mof films
12
electrochemical sensing
12
electrocatalysis mof
8
electrochemical sensors
8
flexible electronics
8
design fabrication
8
fabrication techniques
8
flexible
7
electrochemical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!