AI Article Synopsis

  • Dielectrophoresis (DEP) is a technique used for manipulating polarized particles using electric fields, allowing for precise control without direct contact.
  • The paper reviews recent advancements in DEP for separating and manipulating microparticles and biological cells, focusing on different chip designs for DC-DEP and AC-DEP methods.
  • It also explores functional customizations of DEP systems for tasks like separation and purification, aiming to inspire the development of innovative high-throughput micro/nano platforms for real-world applications.

Article Abstract

Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429840PMC
http://dx.doi.org/10.3390/bios14090417DOI Listing

Publication Analysis

Top Keywords

manipulation separation
8
separation microparticles
8
microparticles biological
8
biological cells
8
practical applications
8
current dielectrophoresis
8
manipulation
5
advances dielectrophoretic
4
dielectrophoretic manipulation
4
cells dielectrophoresis
4

Similar Publications

The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C.

View Article and Find Full Text PDF

Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.

Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.

View Article and Find Full Text PDF

The Drosophila intrinsically disordered protein Ultrabithorax (Ubx) undergoes a series of phase transitions, beginning with noncovalent interactions between apparently randomly organized monomers, and evolving over time to form increasingly ordered coacervates. This assembly process ends when specific dityrosine covalent bonds lock the monomers in place, forming macroscale materials. Inspired by this hierarchical, multistep assembly process, we analyzed the impact of protein concentration, assembly time, and subphase composition on the early, noncovalent stages of Ubx assembly, which are extremely sensitive to their environment.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament reconstruction (ACLR) often involves harvesting a bone-patellar tendon-bone (BPTB) autograft. How graft harvest affects tendon strain across the 3 distinct regions (medial, lateral, and central) is not known.

Purpose: To (1) quantify strain in the 3 regions of the patellar tendon during 60% of maximum voluntary isometric contraction (MVIC) in 90° of knee flexion and (2) assess how effort level in 2 different knee joint angles (60° and 90°) impacts strain in the medial and lateral regions of the patellar tendon, in 2 cohorts of patients after ACLR using a BPTB autograft (one group <24 months after surgery and another group ≥24 months after surgery).

View Article and Find Full Text PDF

Optimizing photocatalysis electron spin control.

Chem Soc Rev

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!