Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430612 | PMC |
http://dx.doi.org/10.3390/cells13181586 | DOI Listing |
ACS Nano
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
Lymphedema, a severe and complex inflammatory disease caused by lymphatic system insufficiency and impeded lymphatic drainage that causes an enormous physical and psychological burden on patients and may even lead to death, has long been a challenging issue in the medical field. Clinically, conventional approaches including surgical treatment and conservative treatment have been employed for lymphedema therapy, but their curative effect is still unsatisfactory because of high operational difficulty, high cost, and long-term reliance. In this study, a novel kind of piezoelectric microneedle driven by ultrasound (US) is proposed to regulate macrophage polarization and remodel the pathological inflammatory microenvironment in a noninvasive manner, thereby promoting lymphatic regeneration and improving lymphedema.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Background: External volume expansion (EVE) devices has been demonstrated to enhance the survival of fat grafts. Decellularized adipose tissue (DAT) serves as a promising scaffold for adipose regeneration; however, the effectiveness of adipose regeneration in DAT remains limited, and the underlying mechanisms of its regeneration require further investigation.
Objective: This study explores the potential of EVE technology to enhance DAT-mediated adipogenesis by facilitating cellular recruitment and establishing a microenvironment conducive to adipose tissue regeneration.
Bioeng Transl Med
January 2025
Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.
Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.
View Article and Find Full Text PDFInt Wound J
January 2025
Colzyx AB, Medicon Village, Lund, Sweden.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy.
Macrophages are cells of the innate immune system with very peculiar characteristics, so plastic that they respond rapidly to environmental changes by assuming different and sometimes contrasting functions, such as initiating a physiological inflammatory response or interrupting it and repairing damaged tissues [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!