Recent advances in cellular therapies have paved the way for innovative treatments of various cancers and autoimmune disorders. Induced pluripotent stem cells (iPSCs) represent a remarkable breakthrough, offering the potential to generate patient-specific cell types for personalized as well as allogeneic therapies. This review explores the application of iPSC-derived chimeric antigen receptor (CAR) T cells, a cutting-edge approach in allogeneic cancer immunotherapies. CAR T cells are genetically engineered immune cells designed to target specific tumor antigens, and their integration with iPSC technology holds immense promise for enhancing the efficacy, safety, and scalability of cellular therapies. This review begins by elucidating the principles behind iPSC generation and differentiation into T cells, highlighting the advantage of iPSCs in providing a uniform, inexhaustible source of CAR T cells. Additionally, we discuss the genetic modification of iPSC-derived T cells to express various CARs, emphasizing the precision and flexibility this affords in designing customized therapies for a diverse range of malignancies. Notably, iPSC-derived CAR T cells demonstrate a superior proliferative capacity, persistence, and anti-tumor activity compared to their conventionally derived counterparts, offering a potential solution to challenges associated with conventional CAR T cell therapies. In conclusion, iPSC-derived CAR T cells represent a groundbreaking advancement in cellular therapies, demonstrating unparalleled potential in revolutionizing the landscape of immunotherapies. As this technology continues to evolve, it holds the promise of providing safer, more effective, and widely accessible treatment options for patients battling cancer and other immune-related disorders. This review aims to shed light on the transformative potential of iPSC-derived CAR T cells and inspire further research and development in this dynamic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430090 | PMC |
http://dx.doi.org/10.3390/cells13181516 | DOI Listing |
Clin Transl Oncol
January 2025
Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden.
View Article and Find Full Text PDFEMBO Rep
January 2025
Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
Cytotoxic lymphocytes are crucial to our immune system, primarily eliminating virus-infected or cancerous cells via perforin/granzyme killing. Perforin forms transmembrane pores in the plasma membrane, allowing granzymes to enter the target cell cytosol and trigger apoptosis. The prowess of cytotoxic lymphocytes to efficiently eradicate target cells has been widely harnessed in immunotherapies against haematological cancers.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey.
Background: Predicting mortality and morbidity poses a significant challenge to physicians, leading to the development of various scoring systems. Among these, the hemoglobin, albumin, lymphocyte and platelet (HALP) score evaluates a patient's nutritional and immune status. The primary aim of this study was to determine the predictive effect of the HALP score on 30-day and 1-year mortality in elderly patients with proximal femoral fractures (PFFs).
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Padua, Padua, PD, Italy.
T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!