AI Article Synopsis

  • Research in motor imagery using EEG signals is crucial for brain-computer interfaces (BCI), but current deep-learning methods struggle to leverage the complex relationships between brain regions.
  • The study introduces a new model called MGCANet, which incorporates multi-view graph convolution and attention mechanisms to better aggregate and analyze EEG data from different brain areas for improved classification accuracy.
  • Experimental results show that MGCANet achieved impressive accuracies of 78.26% and 73.68% on two public datasets, outperforming existing classification methods and offering fresh insights into motor imagery decoding.

Article Abstract

Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain-computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428916PMC
http://dx.doi.org/10.3390/bioengineering11090926DOI Listing

Publication Analysis

Top Keywords

multi-view graph
12
graph convolutional
8
motor imagery
8
eeg signals
8
brain regions
8
classification accuracy
8
efficient multi-view
4
convolutional network
4
network self-attention
4
self-attention multi-class
4

Similar Publications

Protein-protein interactions (PPI) are crucial for understanding numerous biological processes and pathogenic mechanisms. Identifying interaction sites is essential for biomedical research and targeted drug development. Compared to experimental methods, accurate computational approaches for protein-protein interaction sites (PPIS) prediction can save significant time and costs.

View Article and Find Full Text PDF

MultiChem: predicting chemical properties using multi-view graph attention network.

BioData Min

January 2025

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.

View Article and Find Full Text PDF

Synergistic integration of brain networks and time-frequency multi-view feature for sleep stage classification.

Health Inf Sci Syst

December 2025

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.

For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.

View Article and Find Full Text PDF

Multi-view clustering has garnered significant attention due to its capacity to utilize information from multiple perspectives. The concept of anchor graph-based techniques was introduced to manage large-scale data better. However, current methods rely on K-means or uniform sampling to select anchors in the original space.

View Article and Find Full Text PDF

A Topology-Enhanced Multi-Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification.

Mol Inform

January 2025

Faculty of Information Technology, HUTECH University, 700000, Ho Chi Minh City, Vietnam.

In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!