In today's society, robots are increasingly being developed and playing an important role in many fields of industry. Combined with advances in artificial intelligence, sensors, and design principles, these robots are becoming smarter, more flexible, and especially capable of interacting more naturally with humans. In that context, a comprehensive humanoid robot with human-like actions and emotions has been designed to move flexibly like a human, performing movements to simulate the movements of the human neck and head so that the robot can interact with the surrounding environment. The mechanical design of the emotional humanoid robot head focuses on the natural and flexible movement of human electric motors, including flexible suitable connections, precise motors, and feedback signals. The feedback control parts, such as the neck, eyes, eyebrows, and mouth, are especially combined with artificial skin to create a human-like appearance. This study aims to contribute to the field of biomimetic humanoid robotics by developing a comprehensive design for a humanoid robot head with human-like actions and emotions, as well as evaluating the effectiveness of the motor and feedback control system in simulating human behavior and emotional expression, thereby enhancing natural interaction between robots and humans. Experimental results from the survey showed that the behavioral simulation rate reached 94.72%, and the emotional expression rate was 91.50%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431037 | PMC |
http://dx.doi.org/10.3390/biomimetics9090554 | DOI Listing |
Minim Invasive Ther Allied Technol
January 2025
University of Turin, Turin, Italy.
Endovascular interventions excel in treating cardiovascular diseases in a minimally invasive manner, showing improved outcomes over open techniques. However, challenges related to precise navigation - still relying on 2D fluoroscopy - persist. This review examines the role of robotics, highlighting commercial and research platforms, while exploring emerging trends like MRI compatibility, enhanced navigation, and autonomy.
View Article and Find Full Text PDFKardiol Pol
January 2025
3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland.
Langmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFInt J Med Robot
February 2025
Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, New York, USA.
Background: We aimed to investigate the outcome of patients after RDN at different time points.
Methods: We studied the outcomes of 77 living robotic living donor nephrectomies (RDN). Donors were separated into three groups: learning curve period (LCP), stabilisation period (SP), and teaching period (TP).
Cartilage
January 2025
Department of Biomedical Engineering, University of Twente, Enschede, The Netherlands.
Objective: A medial open-wedge high tibial osteotomy (MOWHTO) may increase the posterior tibial slope (PTS). The purpose of this study was to determine the effect of the osteotomy inclination angle (in the sagittal plane) in combination with different hinge positions (in the transverse plane) on the change in PTS due to a MOWHTO.
Methods: We developed a mathematical approach to determine the effect of the osteotomy inclination angle combined with different hinge positions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!