This paper reviews how multifunctioning joints produce highly agile limbs in animals with lessons for robotics. One of the key reasons why animals are so fast and agile is that they have multifunctioning joints in their limbs. The multifunctioning joints lead to a high degree of compactness which then leads to a host of benefits such as low mass, low moment of inertia and low drag. This paper presents three case studies of multifunctioning joints-the human wrist joint, knee joint and foot joints-in order to identify how multifunctioning is achieved and what lessons can be learned for robotics. It also reviews the multifunctioning nature of muscle which plays an important role in joint actuation. A key finding is that multifunctioning is achieved through various means: multiple degrees of freedom, multifunctioning parts, over-actuation and reconfiguration. In addition, multifunctioning is achieved through highly sophisticated layouts with high levels of integration and fine-tuning. Muscle also makes an important contribution to animal agility by performing multiple functions including providing shape, protection and heat. The paper reviews progress in achieving multifunctioning in robot joints particularly for the wrist, knee and foot. Whilst there has been some progress in creating multifunctioning robotic joints, there is still a large gap between the performance of animal and robotic joints. There is an opportunity to improve the agility of robots by using multifunctioning to reduce the size and mass of robotic joints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431000 | PMC |
http://dx.doi.org/10.3390/biomimetics9090529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!