Wound dressing is an ancient technique for promoting healing, and modern technology has led to the development of advanced dressings that enhance patient care. Nanofiber-based wound dressings are a medical innovation with enhanced properties, including improved adhesion, reduced infection rates, and increased tissue regeneration. This article focuses on electrospun nanofibrous wound dressing materials produced using the widely adopted method of electrospinning. This article explores several parameters that influence fiber size, including electrical conductivity, electric potential, collector distance, viscosity, flow rate, and surface tension. With Fucoidan (FUC) loading, an increase in the fiber diameter of the control group from 310 nm to 395 nm was observed. This research also examines the use of Halomonas Levan (HL), a polysaccharide, and polyvinyl alcohol (PVA) polymer as wound dressing materials to enhance the mechanical properties of the latter. The incorporation of various concentrations of FUC into PVA-HL electrospun nanofibers yielded diverse effects on tensile strength: an enhancement was observed in the PVA-HL-10FUC formulation, while reductions were noted in the PVA-HL-13FUC and PVA-HL-15FUC formulations. The WST1 assay demonstrated that none of the samples exhibited cytotoxicity up to 72 h, as cell viability increased over time. In conclusion, nanofibrous PVA-HL structures loaded with FUC, which promote tissue regeneration and prevent infection, could be considered a novel wound dressing material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428952PMC
http://dx.doi.org/10.3390/biomimetics9090508DOI Listing

Publication Analysis

Top Keywords

wound dressing
20
tissue regeneration
8
dressing materials
8
wound
6
dressing
5
development evaluation
4
evaluation fucoidan-loaded
4
fucoidan-loaded electrospun
4
electrospun polyvinyl
4
polyvinyl alcohol/levan
4

Similar Publications

Diabetic foot ulcers (DFUs) represents a significant public health issue, with a rising global prevalence and severe potential complications including amputation. Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization. This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.

View Article and Find Full Text PDF

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Facile Formulation of a Resveratrol-Mediated Multibond Network Hydrogel with Efficient Sustainable Antibacterial, Reactive Oxygen Species Scavenging, Pro-Angiogenesis, and Immunomodulation Activities for Accelerating Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.

The management of chronic infected wounds remains a significant clinical challenge, largely due to the deficiency of optimal wound dressings with adequate mechanical strength, appropriate adhesiveness, and efficient sustainable antibacterial, reactive oxygen species (ROS) scavenging, pro-angiogenesis, and immunomodulation properties. To address such a dilemma, we employed a simple and facile strategy to utilize resveratrol (RSV) as a functional component to mediate hydrogel gelation in this study. The structure of this obtained hydrogel was supported by a multibond network, which not only endowed the resultant product with superior mechanical strength and moderate adhesiveness but also effectively prolonged the bioavailability of RSV.

View Article and Find Full Text PDF

Efficacy of light-transmitting eye shields for wound dressing in preventing pediatric emergence agitation following bilateral strabismus surgeries: a randomized clinical trial.

Korean J Anesthesiol

January 2025

Department of Anesthesiology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Jinsui Road 7th, Tianhe District, Guangzhou, Guangdong 510060, China.

Background: Emergence agitation (EA) occurs in preschool children after ophthalmic surgery as eye shields induce visual disturbance. We aimed to investigate the efficacy of light-transmitting eye shields as an alternative to traditional medical gauze eye shields for wound dressing in terms of EA incidence following strabismus surgery.

Methods: We randomly assigned 70 preschool children undergoing bilateral strabismus surgery to receive either light-transmitting (LT group, n = 35) or medical gauze (MG group, n = 35) eye shields upon the completion of surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!