A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Durability Properties of Steel Textiles and Bonding Properties at the Interface of Steel Textiles with Reinforced Mortar-Reinforced Concrete Systems. | LitMetric

Durability Properties of Steel Textiles and Bonding Properties at the Interface of Steel Textiles with Reinforced Mortar-Reinforced Concrete Systems.

Langmuir

Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.

Published: October 2024

Aging and deterioration of building structures have been persistent concerns in the field of engineering. To address these challenges while supporting modern green and sustainable development goals, this study introduces an innovative reinforcement system that employs steel textiles as the primary reinforcing material. The steel textiles were engineered by optimizing the compatibility between steel fibers and a hot melt adhesive (HMA). These textiles were then used to reinforce concrete structures, creating a steel textile-reinforced mortar (STRM)-reinforced concrete system. The study also examined the durability of the steel textiles and the interfacial bonding performance within the STRM-reinforced concrete system. The results showed that the compatibility between steel fibers and ethylene vinyl acetate copolymer (HMA-2) is better, and the steel textiles prepared with it have superior hydrothermal and corrosion resistance. After the system had been maintained for 28 days, the overall flexural strength of the STRM-reinforced concrete system was increased by 100.03%, the interfacial shear load by 49.54%, the interfacial shear stiffness by 61.2%, and the positive tensile bond performance by 26.1%. This proves that STRM has a good reinforcement effect on the concrete reinforcement system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02269DOI Listing

Publication Analysis

Top Keywords

steel textiles
24
strm-reinforced concrete
12
concrete system
12
steel
9
reinforcement system
8
compatibility steel
8
steel fibers
8
interfacial shear
8
textiles
7
concrete
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!