Integrating artificial intelligence (AI) with electrochemical biosensors is revolutionizing medical treatments by enhancing patient data collection and enabling the development of advanced wearable sensors for health, fitness, and environmental monitoring. Electrochemical biosensors, which detect biomarkers through electrochemical processes, are significantly more effective. The integration of artificial intelligence is adept at identifying, categorizing, characterizing, and projecting intricate data patterns. As the Internet of Things (IoT), big data, and big health technologies move from theory to practice, AI-powered biosensors offer significant opportunities for real-time disease detection and personalized healthcare. Still, they also pose challenges such as data privacy, sensor stability, and algorithmic bias. This paper highlights the critical advances in material innovation, biorecognition elements, signal transduction, data processing, and intelligent decision systems necessary for developing next-generation wearable and implantable devices. Despite existing limitations, the integration of AI into biosensor systems shows immense promise for creating future medical devices that can provide early detection and improved patient outcomes, marking a transformative step forward in healthcare technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425101 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e37964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!