Organisms gain by anticipating future changes in the environment. Those environmental changes often follow stochastic trends. The steeper the slope of the trend, the more likely the trend's momentum carries the future trend in the same direction. This article presents a simple biological circuit that measures the momentum, providing a prediction about future trend. The circuit calculates the momentum by the difference between a short-term and a long-term exponential moving average. The time lengths of the two moving averages can be adjusted by changing the decay rates of state variables. Different time lengths for those averages trade off between errors caused by noise and errors caused by lags in predicting a change in the direction of the trend. Prior studies have emphasized circuits that make similar calculations about trends. However, those prior studies embedded their analyses in the details of particular applications, obscuring the simple generality and wide applicability of the approach. The model here contributes to the topic by clarifying the great simplicity and generality of anticipation for stochastic trends. This article also notes that, in financial analysis, the difference between moving averages is widely used to predict future trends in asset prices. The financial measure is called the moving average convergence-divergence indicator. Connecting the biological problem to financial analysis opens the way for future studies in biology to exploit the variety of highly developed trend models in finance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424073 | PMC |
http://dx.doi.org/10.1093/evlett/qrae027 | DOI Listing |
BMC Neurosci
December 2024
Department of Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Integrated Circuits, Shandong University, Jinan 250100, China.
Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant potential for biomolecular detection and quantitative analysis in biological samples. Although broadband fingerprint enhancement compensates for limitations in detection capability and sensitivity, the complex optical path design in operation restricts its broader adoption. This paper proposes a multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance the broadband THz fingerprint detection of trace analytes.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730030, China.
The construction of an ecological security pattern is crucial to maintain ecosystem health and stability, with great significance for regional sustainable development. Following the research paradigm of "ecological source areas-ecological resistance surfaces-ecological corridors", based on the index framework of "sensitivity-importance-connectivity", we identified the ecological source areas, generated the ecological resistance surface through graded weighting of underlying surface factors and point of interest (POI) method, determined the ecological corridor, pinch point, and obstacle area using circuit theory, and constructed the ecological security pattern of Guizhou Pro-vince. Results showed that the areas of extremely sensitive of rocky desertification and soil erosion and the areas of extremely important areas of water resources forming, soil and water conservation and biodiversity in Guizhou Pro-vince were generally small and distributed differently, accounting for 1.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!