A biological circuit to anticipate trend.

Evol Lett

Department of Ecology & Evolutionary Biology, University of California, Irvine, CA, United States.

Published: September 2024

Organisms gain by anticipating future changes in the environment. Those environmental changes often follow stochastic trends. The steeper the slope of the trend, the more likely the trend's momentum carries the future trend in the same direction. This article presents a simple biological circuit that measures the momentum, providing a prediction about future trend. The circuit calculates the momentum by the difference between a short-term and a long-term exponential moving average. The time lengths of the two moving averages can be adjusted by changing the decay rates of state variables. Different time lengths for those averages trade off between errors caused by noise and errors caused by lags in predicting a change in the direction of the trend. Prior studies have emphasized circuits that make similar calculations about trends. However, those prior studies embedded their analyses in the details of particular applications, obscuring the simple generality and wide applicability of the approach. The model here contributes to the topic by clarifying the great simplicity and generality of anticipation for stochastic trends. This article also notes that, in financial analysis, the difference between moving averages is widely used to predict future trends in asset prices. The financial measure is called the moving average convergence-divergence indicator. Connecting the biological problem to financial analysis opens the way for future studies in biology to exploit the variety of highly developed trend models in finance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424073PMC
http://dx.doi.org/10.1093/evlett/qrae027DOI Listing

Publication Analysis

Top Keywords

biological circuit
8
stochastic trends
8
future trend
8
moving average
8
time lengths
8
moving averages
8
errors caused
8
prior studies
8
financial analysis
8
trend
6

Similar Publications

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant potential for biomolecular detection and quantitative analysis in biological samples. Although broadband fingerprint enhancement compensates for limitations in detection capability and sensitivity, the complex optical path design in operation restricts its broader adoption. This paper proposes a multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance the broadband THz fingerprint detection of trace analytes.

View Article and Find Full Text PDF

Phage-mediated intercellular CRISPRi for biocomputation in bacterial consortia.

Nucleic Acids Res

December 2024

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.

Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.

View Article and Find Full Text PDF

The construction of an ecological security pattern is crucial to maintain ecosystem health and stability, with great significance for regional sustainable development. Following the research paradigm of "ecological source areas-ecological resistance surfaces-ecological corridors", based on the index framework of "sensitivity-importance-connectivity", we identified the ecological source areas, generated the ecological resistance surface through graded weighting of underlying surface factors and point of interest (POI) method, determined the ecological corridor, pinch point, and obstacle area using circuit theory, and constructed the ecological security pattern of Guizhou Pro-vince. Results showed that the areas of extremely sensitive of rocky desertification and soil erosion and the areas of extremely important areas of water resources forming, soil and water conservation and biodiversity in Guizhou Pro-vince were generally small and distributed differently, accounting for 1.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!