Similar Publications

Photobiocatalytic Platform for the Efficient Enantio-Divergent Synthesis of β-Fluoromethylated Ketones.

J Am Chem Soc

November 2024

State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

β-Fluoromethyl (CHF, CHF, and CF)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones.

View Article and Find Full Text PDF

Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate.

Angew Chem Int Ed Engl

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China.

Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the -C≡N groups at the edge of cyano-rich carbon nitride (g-CN-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (cdNiR) is inhibited due to the physiological distance limit of active sites (>14 Å). By means of the directional electron transfer between g-CN-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N to usable nitrite with an unprecedented selectivity of up to 95.

View Article and Find Full Text PDF

Photobiocatalytic CO reduction represents an attractive approach for conversion of solar light and abundant resources to value-added chemicals. However, the design of suitable systems requires a detailed understanding of the interaction between the artificial photosensitizer and biocatalyst interface. In this work, we investigate the effect of surfactant charge utilized in the preparation of a phenoxazine-based organic molecule nanorod photosensitizer on the interaction with the carbon monoxide dehydrogenase II from within biohybrid assemblies for sacrificially driven photobiocatalytic CO reduction into CO.

View Article and Find Full Text PDF

Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light.

Nat Commun

September 2023

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.

The selective enzymatic reduction of nitroaliphatic and nitroaromatic compounds to aliphatic amines and amino-, azoxy- and azo-aromatics, respectively, remains a persisting challenge for biocatalysis. Here we demonstrate the light-powered, selective photoenzymatic synthesis of aliphatic amines and amino-, azoxy- and azo-aromatics from the corresponding nitro compounds. The nitroreductase from Bacillus amyloliquefaciens, in synergy with a photocatalytic system based on chlorophyll, promotes selective conversions of electronically-diverse nitroarenes into a series of aromatic amino, azoxy and azo products with excellent yield (up to 97%).

View Article and Find Full Text PDF

Enzymatic Fisher-Tropsch (FT) process catalyzed by vanadium (V)-nitrogenase can convert carbon monoxide (CO) to longer-chain hydrocarbons (>C2) under ambient conditions, although this process requires high-cost reducing agent(s) and/or the ATP-dependent reductase as electron and energy sources. Using visible light-activated CdS@ZnS (CZS) core-shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V-nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo-enzymatic C-C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto-electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP-independent, photon-to-fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP-coupled transformation of CO into hydrocarbons by V-nitrogenase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!