Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Astragalus membranaceus (AM) is a traditional Chinese medicine that has been clinically utilized as an adjunctive therapy for the treatment of myocardial ischemia and heart failure; however, its precise molecular mechanism of action remains unknown.
Objective: This study aims to investigate the potential pharmacological effects and molecular mechanism of AM in the treatment of ischemic heart failure (IHF) using network pharmacology methods, molecular docking technology, and in vitro experiments.
Methods: The active components and targets of AM were obtained from the TCMSP databases, while the disease targets of IHF were retrieved from GeneCards and OMIM databases. The analysis of overlapping targets between AM and IHF mainly included active compounds-targets network, PPI network, and GO and KEGG enrichment analysis. The association between active compounds and target proteins was verified through molecular docking. Additionally, an in vitro experimental model was used to evaluate the accuracy of the forecast results.
Results: The network pharmacological analysis revealed that quercetin, kaempferol, 7-Omethylisomucronulatol, formononetin, and isorhamnetin were the core active components of AM in treating IHF. The core targets included AKT1, IL6, IL1B, PTGS2, CASP3, MMP9, and HIF1A. The molecular docking results demonstrated a strong binding affinity between these active components and targets. The KEGG pathway analysis suggested that the PI3K-AKT signaling pathway might play a central role in mediating AM's therapeutic effects on IHF. In vitro experiments demonstrated that AM treatment enhanced cell viability, reduced heart failure biomarkers, and suppressed cell apoptosis. Furthermore, the western blot analyses indicated that AM treatment effectively regulated AKT1 phosphorylation in an experimental model of IHF.
Conclusion: Through integrated network pharmacological analysis, molecular docking technology, and in vitro experimental validation, it was demonstrated that AM can effectively mitigate IHF through activating PI3K-AKT signaling pathway. These findings significantly advance our understanding of the molecular mechanisms in IHF treatment and contribute further to promoting the clinical application of AM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113862073322602240909113946 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!