To analyze the distribution of clopidogrel metabolism-related gene variability in Kawasaki disease (KD) children with coronary artery lesions (CAL) across different age groups and the impact of genetic variability on the efficacy of clopidogrel antiplatelet therapy. A retrospective cohort study was conducted. Clinical data were collected from 46 KD children with CAL who were hospitalized in the Cardiovascular Center of Children's Hospital of Fudan University between January 2021 and August 2022 and were treated with clopidogrel, including gender, age, body mass index, course of KD, CAL severity grade, and baseline platelet count. According to their age, the children were divided into ≥2-year-old group and <2-year-old group. Their platelet responsiveness was assessed by adenosine diphosphate-induced platelet inhibition rate (ADPi) calculated via thromboelastography, and children were categorized into high on-treatment platelet reactivity (HTPR) and normal on-treatment platelet reactivity (NTPR) groups. Genotypes of CYP2C19, PON1 and ABCB1 were detected. The test, one-way analysis of variance and Chi-square test were used for intergroup comparison. Among the 46 KD children with CAL, 34 were male and 12 were female; 37 were ≥2-year-old and 9 were <2-year-old; 25 cases were in the HTPR group and 21 cases were in the NTPR group, with 19 HTPR and 18 NTPR in the ≥2-year-old group, and 6 HTPR and 3 NTPR in the <2-year-old group. Genetic analysis showed that 92 alleles among the 46 children, with frequencies of CYP2C19*1, CYP2C19*2, CYP2C19*3, CYP2C19*17, PON1 192Q, PON1 192R, ABCB1 3435C, ABCB1 3435T at 59% (54/92), 32% (29/92), 9% (8/92), 1% (1/92), 36% (36/92), 64% (59/92), 63% (58/92) and 37% (34/92), respectively. Analysis of the impact of genotype on ADPi revealed that in children aged ≥2 years, those with CYP2C19*1/*3 genotype had significantly lower ADPi than those with CYP2C19*1/*1 genotype ((34±15)% (61±29)%, =2.18, =0.036). There were also no significant difference in ADPi among children with PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes ((40±22)% (52±33)% (65±27)%, =2.17, =0.130), or among those with ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((55±34)% (60±27)% (49±24)%, =0.33, =0.719). In <2-year-old group, there were no significant differences in ADPi across CYP2C19*1/*1, CYP2C19*1/*2 and CYP2C19*2*2 genotypes ((40±20)% (53±37)% (34±16)%, =0.37, >0.05). There were no significant differences in ADPi across CYP2C19*1/*1 and CYP2C19*1/*3 genotypes ((44±27)% (42±20)%, =0.08, >0.05). There were no significant differences in ADPi across PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes (45% (55±27)% (24±5)%, =1.83, >0.05). There were no significant differences in ADPi across ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((36±16)% (50±35)% 45%, =0.29, >0.05). The risk analysis of HTPR in different genotypes revealed that in children aged ≥2 years, carrying at least 1 or 2 loss-of-function alleles of CYP2C19 was a risk factor for HTPR (=4.69, 10.00, 95% 1.11-19.83, 0.84-119.32, =0.033, 0.046, respectively), and PON1 192R homozygosity and carrying at least one PON1 192R allele were protective factors against HTPR (=0.08, 0.13, 95% 0.01-0.86, 0.01-1.19, =0.019, 0.043, respectively). KD children aged ≥2 years carrying CYP2C19 loss-of-function alleles and PON1 192Q are more likely to develop HTPR.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn112140-20240802-00548DOI Listing

Publication Analysis

Top Keywords

genetic variability
8
variability kawasaki
8
kawasaki disease
8
disease children
8
children coronary
8
coronary artery
8
children aged
8
aged ≥2
8
≥2 years
8
years carrying
8

Similar Publications

Genetic diversity and population structure of cowpea mutant collection using SSR and ISSR molecular markers.

Sci Rep

December 2024

Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal.

Cowpea is a seed legume, important for food and nutritional security in Africa's arid and semi-arid zones. Despite its importance, cowpea is experiencing a loss of genetic diversity due to climate change. Therefore, this study aimed to evaluate the genetic variability of 33 cowpea mutant collections using 20 SSR and 13 ISSR markers.

View Article and Find Full Text PDF

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!