We report a micro-fractionation device for high performance liquid chromatography-mass spectrometry to archive chromatographic separations on an array of optimized surface energy traps (SETs). The method has the potential to significantly alter nanoflow LC-MS workflow, decoupling separation and analysis. The wetting characteristics of the SETs cause the HPLC eluent stream to spontaneously split into droplet microfractions. The droplet mirofractions are then dried down to enable facile storage and transport of the archived separation. Discontinuously dewetting array parameters were explored to maximize array volume and resolution using a combination of SET design, shape, size, and spacing. Mass spectrometry analysis is performed utilizing a liquid micro-junction surface sampling probe to extract dried analytes from the surface of the SETs followed by electrospray ionisation. A reverse phase separation of pharmaceutical compounds is "recorded" using the micro-fractionation device followed by "reading" the chromatographic trace with a mass spectrometer 24 hours after the separation was performed/archived, demonstrating a true decoupling of LC, and MS. Additionally, we demonstrate the ability to collect microfractions with sub-one-second integration time, approaching the scan time of a mass spectrometer or UV-Vis detector. With further improvements to the device, sub-1-second micro-fractionation may enable seamless reconstruction of archived chromatograms indistinguishable from online LC-MS data, while also providing the benefits of easy storage and transport of archived separations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an00828fDOI Listing

Publication Analysis

Top Keywords

mass spectrometer
12
chromatographic separations
8
surface energy
8
energy traps
8
micro-fractionation device
8
storage transport
8
transport archived
8
storing liquid
4
liquid chromatographic
4
surface
4

Similar Publications

Development and validation of an LC-MS/MS method for quantifying total and unbound doravirine in human plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa. Electronic address:

A robust LC-MS/MS method was developed to quantify total and unbound doravirine in plasma samples from patients receiving daily doses of 100 mg doravirine, in combination with lamivudine and tenofovir disoproxil fumarate, in a phase 3 clinical trial. The trial is ongoing, and sample analysis is planned to commence once all samples have been collected. The method was validated to quantify both total and unbound doravirine using a single calibration curve.

View Article and Find Full Text PDF

Background: Apolipoprotein ε4 (APOE4) is a major risk factor for Alzheimer's disease (AD). APOE4 carriers display altered whole-body metabolism, including increased blood glucose and inuslin. Although conditions affecting whole-body metabolism like obesity and diabetes are AD risk factors, knowledge regarding the contribution of peripheral tissues to this effect is minimal.

View Article and Find Full Text PDF

Background: Despite being the most common cause of dementia worldwide, the mechanisms underlying the progression of Alzheimer's disease (AD) are not clear and effective treatments are still needed. Hence, further investigation regarding the pathogenesis of AD is required, which might allow for a better understanding of the disease, as well as for an early diagnosis of AD, thus improving the clinical management of AD patients. Here, to identify key proteins in AD pathogenesis, we performed two proteomics strategies, TMT (Tandem Mass Tags) 10-plex quantitative proteomics and LFQ (Label Free Quantification).

View Article and Find Full Text PDF

A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS.

View Article and Find Full Text PDF

A Simple and Sensitive LC-MS/MS Method for the Determination of Mobocertinib and Its Metabolite Desmethyl-Mobocertinib in Human Plasma and Its Application to Clinical Pharmacokinetic Study.

Biomed Chromatogr

February 2025

Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.

Mobocertinib is a potent selective tyrosine kinase inhibitor approved for the treatment of non-small cell lung cancer with activating EGFR exon 20 insertions. The aim of this study was to develop a procedure for liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of mobocertinib and its metabolite desmethyl-mobocertinib in human plasma. The human plasma samples were precipitated with acetonitrile and analyzed using a Waters ACQUITY BEH C column coupled to a triple quadrupole mass spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!