A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A moving target: trade-offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate. | LitMetric

AI Article Synopsis

  • Trees can change the size of their leaves based on how much water is available to help them deal with stress from not having enough water.
  • Researchers used a special model to compare two ways trees can use their leaf area: one way boosts carbon gain, and the other way helps reduce stress from lack of water.
  • They found that while aiming for carbon gain can be good, it might cause more stress on the tree, and focusing on reducing stress can lead to fewer benefits for the tree's growth in the future.

Article Abstract

Observational evidence indicates that tree leaf area may acclimate in response to changes in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving leaf area changes and consequences of different leaf area allocation strategies remain unknown. Here, we use a trait-based hydraulically enabled tree model with two endmember leaf area allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress. We examined the impacts of these strategies on future plant stress and productivity. Allocating leaf area to maximize carbon gain increased productivity with high CO, but systematically increased hydraulic stress. Following an allocation strategy to avoid increased future hydraulic stress missed out on 26% of the potential future net primary productivity in some geographies. Both endmember leaf area allocation strategies resulted in leaf area decreases under future climate scenarios, contrary to Earth system model (ESM) predictions. Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of accelerated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic effects on canopy acclimation in ESMs could limit or reverse current projections of future increases in leaf area, with consequences for the carbon and water cycles, and surface energy budgets.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20127DOI Listing

Publication Analysis

Top Keywords

leaf area
36
hydraulic stress
24
area allocation
12
allocation strategies
12
carbon gain
12
leaf
9
area
9
maximizing carbon
8
endmember leaf
8
increased hydraulic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!