AI Article Synopsis

  • Deferasirox (DFX) is an iron chelator that effectively treats iron overload and can enhance red blood cell production in myelodysplastic syndrome patients, reducing their need for blood transfusions.
  • The study explores how DFX impacts myeloid cell maturation and shows that its effects vary depending on the differentiation stage, influencing mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation.
  • Findings indicate that DFX increases mitochondrial ROS in neutrophils and alters gene expression associated with NF-kB and MYC in progenitors, suggesting it impairs the final maturation of these immune cells.

Article Abstract

The iron chelator deferasirox (DFX) is effective in the treatment of iron overload. In certain patients with myelodysplastic syndrome, DFX can also provide a dramatic therapeutic benefit, improving red blood cell production and decreasing transfusion requirements. Nuclear Factor-kappa B (NF-kB) signalling has been implicated as a potential mechanism behind this phenomenon, with studies focusing on the effect of DFX on haematopoietic progenitors. Here, we examine the phenotypic and transcriptional effects of DFX throughout myeloid cell maturation in both murine and human model systems. The effect of DFX depends on the stage of differentiation, with effects on mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation that vary between progenitors and neutrophils. DFX triggers a greater increase in mitochondrial ROS production in neutrophils and this phenomenon is mitigated when cells are cultured in hypoxic conditions. Single-cell transcriptomic profiling revealed that DFX decreases the expression of NF-kB and MYC (c-Myc) targets in progenitors and decreases the expression of PU.1 (SPI1) gene targets in neutrophils. Together, these data suggest a role of DFX in impairing terminal maturation of band neutrophils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568922PMC
http://dx.doi.org/10.1111/bjh.19782DOI Listing

Publication Analysis

Top Keywords

iron chelator
8
mitochondrial ros
8
dfx
8
ros production
8
decreases expression
8
deferasirox iron
4
chelator impacts
4
impacts myeloid
4
myeloid differentiation
4
differentiation modulating
4

Similar Publications

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products.

View Article and Find Full Text PDF

In Situ Conversion of Atherosclerotic Plaques' Iron into Nanotheranostics.

J Am Chem Soc

January 2025

Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.

The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.

View Article and Find Full Text PDF

Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as "rust tanks" of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear.

View Article and Find Full Text PDF

Objective: To assess the efficacy and safety of cefiderocol (CFDC) in the treatment of Gram-negative bacteria (GNB) infections.

Methods: Relevant studies were collected from PubMed, Web of Science, Cochrane, and Embase databases, from inception to 15 October 2023. The search formula was as follow: "cefiderocol", "S-649266", "Gram-Negative Bacteria", "Gram Negative Bacteria", "Klebsiella pneumoniae", "Hyalococcus pneumoniae", and "Bacterium pneumoniae proposal".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!