An interface modification layer holds paramount significance in reducing interface carrier recombination and improving the ohmic contact between the active layer and the electrode in organic solar cells (OSCs). Modifying or doping the widely used hole-transport layer (HTL) PEDOT:PSS to adjust the work function, conductivity, and acidity has become a common strategy for achieving high-performance OSCs. Metal oxides and two-dimensional materials as secondary dopants into PEDOT:PSS, respectively, as well as a replacement of PEDOT:PSS both exhibit immense potential for achieving high-performance OSCs due to their excellent electrical properties. Herein, we report a method utilizing a FeO/GO magnetic nanocomposite as a secondary dopant for PEDOT:PSS to modulate its inherent properties for constructing high-efficiency OSCs. The magnetic nanocomposite hybrid HTL exhibits a suitable optical transmittance and higher work function. Meanwhile, it is found that the addition of FeO/GO magnetic nanoparticles expands the domain of PEDOT and enhances the phase separation between PEDOT and PSS segments, thereby improving the conductivity of PEDOT:PSS. By fine-tuning the doping ratio of a FeO/GO magnetic nanocomposite in PEDOT:PSS, the best power conversion efficiency of OSCs based on PM6:L8-BO was up to 18.91%. The notable enhancement of the device's performance was due to the enhanced hole mobility and the improved charge extraction, further complemented by the decreased likelihood of interface recombination brought about by the hybrid HTL. Compared with PEDOT:PSS-based OSCs, an enhanced stability of the hybrid HTL-based device was also obtained. In addition, the diverse adaptability of the hybrid HTL was demonstrated in enhancing the performance of OSCs that are based on PM6:Y6 and PBDB-T:ITIC. The effectiveness and versatility of a magnetic nanocomposite hybrid HTL present opportunities for achieving high-performance OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c15255 | DOI Listing |
Food Chem X
January 2025
Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, People's Republic of China.
The increasing economic damage caused by terrestrial gastropods, especially the Monacha cartusiana (M. cartusiana) land snail, to the agricultural sector requires a diligent and continuous search for new materials and alternatives for the control operations. In this piece of work, a magnetically separable molluscicide with high effectiveness green Barium-Cerium-Copper ferrite/TiO (Ba-Ce-CuFO/TiO) nanocomposite was greenly prepared using Eichhornia plant aqueous extract and characterized using different techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. Electronic address:
Tert-butylhydroquinone (TBHQ) is a widely used synthetic phenolic antioxidant found in edible oils and other fried foods. Nevertheless, the excess use of TBHQ can reduce food quality and impact public health. In this paper, we reported the synthesis of a nanocomposite consisting of carbon and nitrogen co-doped nickel oxide (NiO-N/C-700), which was used to modify a pencil graphite electrode for the sensitive detection of TBHQ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!