Background: Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and a significant cause of acquired blindness in the working-age population worldwide. Aging is considered as an important risk factor for DR development. Macrophages in aged mice bear typical M2 marker proteins but simultaneously express a pro-inflammatory factor profile. This may explain why the level of intraocular inflammation does not decrease during proliferative diabetic retinopathy (PDR) despite the occurrence of neovascularization and fibrosis (M2 activation). α-Klotho (KL) was originally discovered as a soluble anti-aging factor, which is mainly expressed in kidney tubular epithelium, choroid plexus in the brain and secreted in the blood. However, the role of KL in DR pathophysiology has not been previously reported.
Methods: Type 1 (streptozotocin [STZ]-induced) and type 2 (a high-fat diet along with a low dose of STZ) diabetic mouse models were established and injected with or without KL adenovirus via the tail vein for 12 weeks. Vldlr mice were injected intravitreally with or without soluble KL protein from P8 to P15. The retinal structure and function were analyzed by electroretinogram and optical coherence tomography. The neovascular lesions were analyzed by retinal flat mount and RPE flat mount. The senescence markers, macrophage morphology, and KL expression levels were detected by immunofluorescence staining. A cell model was constructed using RAW264.7 cells stimulated by 4-hydroxynonenal (4HNE) and transfected with or without KL adenovirus. The senescence-associated secretory phenotypes were detected by qRT-PCR. Senescence was detected by SA-β-Gal staining. Serum, aqueous humor, and vitreous humor KL levels of proliferative diabetic retinopathy (PDR) patients were measured by enzyme-linked immunosorbent assay. Quantitative proteomics and bioinformatics were applied to predict the change of proteins and biological function after overexpression of KL in macrophages. The effects of KL on the HECTD1 binding to IRS1 were analyzed by bioinformatics, molecular docking, and Western Blot.
Results: Serum, aqueous humor, and vitreous humor KL levels were lower in patients with PDR than in those with cataracts. KL relieved the retinal structure damage, improved retina function, and inhibited retinal senescence in diabetic mice. KL administration attenuated the neovascular lesions in VLDLR mice by decreasing the secretion of VEGFA and FGF2 from macrophages. KL also protected RAW264.7 cells from 4HNE-induced senescence. Additionally, it inhibited E3 ubiquitin ligase HECTD1 expression in both diabetic mouse peripheral blood mononuclear cells and 4HNE-treated RAW264.7 cells. KL inhibited HECTD1 binding to IRS1 and reduced the ubiquitination of IRS1.
Conclusions: Macrophage aging is involved in DM-induced retinopathy. KL alleviates DM-induced retinal macrophage senescence by downregulating HECTD1 and decreasing IRS1 ubiquitination and degradation. Meanwhile, KL administration attenuated the neovascular lesions by altering the activation state of macrophages and decreasing the expression of VEGFA and FGF2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426092 | PMC |
http://dx.doi.org/10.1186/s12964-024-01838-w | DOI Listing |
Mol Pharm
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications.
View Article and Find Full Text PDFBMJ Open
December 2024
Westmead Institute for Medical Research, Westmead, New South Wales, Australia
Introduction: Diabetic macular oedema (DMO), a serious ocular complication of diabetic retinopathy (DR), is a leading cause of vision impairment worldwide. If left untreated or inadequately treated, DMO can lead to irreversible vision loss and blindness. Intravitreal injections using antivascular endothelial growth factor (anti-VEGF) and laser are the current standard of treatment for DMO.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China.
Diabetic retinopathy is a major ocular complication of diabetes, characterized by progressive retinal microvascular damage and significant visual impairment in working-age adults. Traditional bulk RNA sequencing offers overall gene expression profiles but does not account for cellular heterogeneity. Single-cell RNA sequencing overcomes this limitation by providing transcriptomic data at the individual cell level and distinguishing novel cell subtypes, developmental trajectories, and intercellular communications.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Optometry, College of Medicine and Health Sciences, Comprehensive Specialized Hospital, University of Gondar, Gondar, Ethiopia.
Baground: Cataract is a major public health concern and the leading cause of blindness and low vision in Ethiopia. However, no studies have been conducted to assess the prevalence of cataract and associated factors among adult diabetic patients in the study area. Therefore, this study aimed to assess the prevalence of cataract and associated factors among adult diabetic patients in Northwest Ethiopia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!