A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep residual 2D convolutional neural network for cardiovascular disease classification. | LitMetric

Deep residual 2D convolutional neural network for cardiovascular disease classification.

Sci Rep

Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia, 44745, Egypt.

Published: September 2024

Cardiovascular disease (CVD) continues to be a major global health concern, underscoring the need for advancements in medical care. The use of electrocardiograms (ECGs) is crucial for diagnosing cardiac conditions. However, the reliance on professional expertise for manual ECG interpretation poses challenges for expanding accessible healthcare, particularly in community hospitals. To address this, there is a growing interest in leveraging automated and AI-driven ECG analysis systems, which can enhance diagnostic accuracy and efficiency, making quality cardiac care more accessible to a broader population. In this study, we implemented a novel deep two-dimensional convolutional neural network (2D-CNN) on a dataset of PTB-XL for cardiac disorder detection. The studies were performed on 2, 5, and 23 classes of cardiovascular diseases. The our network in classifying healthy/sick patients achived an AUC of 95% and an average accuracy of 87.85%. In 5-classes classification, our model achieved an AUC of 93.46% with an average accuracy of 89.87%. In a more complex scenario involving classification into 23 different classes, the model achieved an AUC of 92.18% and an accuracy of 96.88%. According to the experimental results, our model obtained the best classification result compared to the other methods based on the same public dataset. This indicates that our method can aid healthcare professionals in the clinical analysis of ECGs, offering valuable assistance in diagnosing CVD and contributing to the advancement of computer-aided diagnosis technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427665PMC
http://dx.doi.org/10.1038/s41598-024-72382-3DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
cardiovascular disease
8
average accuracy
8
model achieved
8
achieved auc
8
deep residual
4
residual convolutional
4
network cardiovascular
4
classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!