Proteome analysis by data-independent acquisition (DIA) has become a powerful approach to obtain deep proteome coverage, and has gained recent traction for label-free analysis of single cells. However, optimal experimental design for DIA-based single-cell proteomics has not been fully explored, and performance metrics of subsequent data analysis tools remain to be evaluated. Therefore, we here formalize and comprehensively evaluate a DIA data analysis strategy that exploits the co-analysis of low-input samples with a so-called matching enhancer (ME) of higher input, to increase sensitivity, proteome coverage, and data completeness. We assess the matching specificity of DIA-ME by a two-proteome model, and demonstrate that false discovery and false transfer are maintained at low levels when using DIA-NN software, while preserving quantification accuracy. We apply DIA-ME to investigate the proteome response of U-2 OS cells to interferon gamma (IFN-γ) in single cells, and recapitulate the time-resolved induction of IFN-γ response proteins as observed in bulk material. Moreover, we uncover co- and anti-correlating patterns of protein expression within the same cell, indicating mutually exclusive protein modules and the co-existence of different cell states. Collectively our data show that DIA-ME is a powerful, scalable, and easy-to-implement strategy for single-cell proteomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427561PMC
http://dx.doi.org/10.1038/s41467-024-52605-xDOI Listing

Publication Analysis

Top Keywords

single-cell proteomics
12
ifn-γ response
8
co-existence cell
8
cell states
8
proteome coverage
8
single cells
8
data analysis
8
enhanced feature
4
feature matching
4
matching single-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!