Microorganisms can induce diseases with significant clinical implications for human health. Multidrug-resistant microorganisms have been on the rise worldwide over the past few decades, and no new antibiotics have been introduced to the market in a considerable amount of time. Such situation highlights the urgency of discovering new antimicrobial drugs to address this pressing issue. Therefore, the objective of this study was to identify bioactive compounds against 15 species of bacteria and 5 species of fungi of clinical relevance through in vitro screening of 58 synthetic compounds from four chemical classes of our internal library of synthetic compounds. Our findings highlight arylpiperazines 18, 20, 26, 27, and 29, and the aminothiazole 50, as potent broad-spectrum antimicrobials (MICs=12.5-15.6 μg mL) against clinically relevant bacteria and fungi. Additionally, these compounds displayed low cytotoxicity against various host cells and a favorable in vitro pharmacokinetic profile for oral administration. Indeed, all six showed adequate lipophilicity, high gastrointestinal permeability, metabolic stability in human and mouse liver microsomes, and satisfactory aqueous solubility. Thus, they emerge as promising starting points for hit-to-lead studies towards new antibacterial and antifungal agents, especially against Staphylococcus epidermidis, Staphylococcus aureus, Lactobacillus paracasei and Candida orthopsilosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202402100 | DOI Listing |
J Am Chem Soc
January 2025
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
This study investigates the potential of boron trifluoride etherate (BF·OEt) to trigger unprecedented reactions of 2-oxoaldehydes with nitriles and amides/sulphonamides. In contrast to the mechanism in conventional reactions, the α-carbonyl group in 2-oxoaldehydes induces a cyclization pathway to be followed when reacting with nitriles, yielding 4-amidooxazoles. Additionally, reactions with weak nucleophiles produce β-keto amides/sulphonamides.
View Article and Find Full Text PDFMed Chem
January 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
Pyrazoline is a 5-membered ring that has two adjacent nitrogen. It has gained advanced attention from medical and organic chemists due to very low cytotoxic activities. It is applicable and more applied in research fields and has various pharmacological activities, including cardiovascular, anti-tumor, and anti-cancer properties.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
APIGENEX s.r.o., Poděbradská 173/5, Prague 19000, Czech Republic.
Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.
Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.
BMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!