Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO on SrTiO (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c09921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!