Bleomycin-induced chromosomal aberrations in Epstein-Barr virus-transformed human lymphoblastoid cells.

Mutat Res Genet Toxicol Environ Mutagen

Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-UNLP-CICPBA), calle 526 y Camino General Belgrano, La Plata, Buenos Aires B1906APO, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina. Electronic address:

Published: October 2024

We have evaluated the induction of complete (i.e., without open ends) and incomplete (i.e., with non-rejoined or open ends) chromosomal aberrations by the radiomimetic antibiotic bleomycin (BLM) in human lymphoblastoid cells immortalized with the Epstein-Barr virus (EBV). An EBV-induced lymphoblastoid cell line (T-37) was exposed to BLM (10-200 µg/mL) for 2 h at 37ºC, and chromosomal aberrations were analyzed 24 h after treatment, using PNA-FISH with pan-telomeric and pan-centromeric probes. Both complete (multicentrics, rings, compound acentric fragments, and interstitial deletions) and incomplete (incomplete chromosomes or IC, and terminal acentric fragments or TAF) chromosomal aberrations increased significantly in BLM-exposed cells, although the concentration-response relationship was non-linear. Of the acentric fragments (ace) induced by BLM, 40 % were compound fragments (CF, ace +/+). TAF (ace, +/-) and interstitial fragments (IAF, ace -/-) were induced at similar frequencies (30 %). 230 ICE were induced by BLM, of which 52 % were IC and 48 % TAF. The average ratio between total incomplete chromosome elements (ICE) and multicentrics was 1.52. These findings suggest that human lymphoblastoid cells exhibit less repair capacity than human lymphocytes, with respect to BLM-induced ICE, and that chromosomal incompleteness is a common event following exposure of these cells to BLM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2024.503823DOI Listing

Publication Analysis

Top Keywords

chromosomal aberrations
16
human lymphoblastoid
12
lymphoblastoid cells
12
acentric fragments
12
open ends
8
fragments ace
8
induced blm
8
cells
5
blm
5
fragments
5

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.

Background: Mosaic loss of chromosome Y (mLOY) refers to acquired aneuploidy in a fraction of somatic cells. In aging men, this has been suggested as a possible biomarker for increased risk of numerous diseases, including Alzheimer's disease (AD). We investigated mLOY estimated from whole genome sequencing (WGS) as a risk factor for AD in the Midwestern Amish, a founder population with homogeneous lifestyle, reducing the effect of confounding environmental factors.

View Article and Find Full Text PDF

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Incidental Detection of Maternal Cancer Following Cell-Free DNA Screening for Fetal Aneuploidies.

Clin Chem

January 2025

Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Institute, National Institutes of Health, Bethesda, MD, United States.

Background: Prenatal cell-free DNA (cfDNA) screening is a success story of clinical genomics that has translated to and transformed obstetric care. It is a highly sensitive and specific method of screening for the most common fetal aneuploidies, including trisomies 13, 18, and 21. While primarily designed to detect fetal chromosomal abnormalities, the test also analyzes maternal cfDNA, which can complicate interpretation of results.

View Article and Find Full Text PDF

Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!