Ablation of mitophagy receptor FUNDC1 accentuates septic cardiomyopathy through ACSL4-dependent regulation of ferroptosis and mitochondrial integrity.

Free Radic Biol Med

Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. Electronic address:

Published: November 2024

Sepsis evokes compromised myocardial function prompting heart failure albeit target therapy remains dismal. Our study examined the possible role of mitophagy receptor FUNDC1 in septic cardiomyopathy. A sepsis model was established using cecal ligation and puncture (CLP) in FUNDC1 knockout (FUNDC1) and WT mice prior to the evaluation of cardiac morphology, echocardiographic and cardiomyocyte contractile, oxidative stress, apoptosis, necroptosis, and ferroptosis. RNAseq analysis depicted discrepant patterns in mitophagy, oxidative stress and ferroptosis between CLP-challenged and control murine hearts. Septic patients displayed cardiac injury alongside low plasma FUNDC1 and iron levels. CLP evoked interstitial fibrosis, cardiac dysfunction (lowered ejection fraction, fractional shortening, shortening/relengthening velocity, peak shortening and electrically-stimulated intracellular Ca rise, alongside increased LV end systolic diameter and relengthening duration), O buildup, apoptosis, necroptosis, and ferroptosis (downregulated GPX4 and SLC7A11), the responses of which were accentuated by FUNDC1 ablation. In particular, levels of lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) were upregulated following CLP procedure, with a more pronounced response in FUNDC1 mice. Co-immunoprecipitation and interaction interface revealed an evident interaction between FUNDC1 and ACSL4. In vitro studies revealed that the endotoxin lipopolysaccharide provoked cardiomyocyte contractile and lipid peroxidation anomalies, the responses were reversed by the mitophagy inducer oleanolic acid, inhibition of ACSL4 and ferroptosis. These findings favor a role for FUNDC1-ACSL4-ferroptosis cascade in septic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.09.039DOI Listing

Publication Analysis

Top Keywords

septic cardiomyopathy
12
mitophagy receptor
8
fundc1
8
receptor fundc1
8
fundc1 mice
8
cardiomyocyte contractile
8
oxidative stress
8
apoptosis necroptosis
8
necroptosis ferroptosis
8
lipid peroxidation
8

Similar Publications

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Sepsis often leads to vasoplegia and a hyperdynamic cardiac state, with treatment focused on restoring vascular tone. However, sepsis can also cause reversible myocardial dysfunction, particularly in the elderly with pre-existing heart conditions. The Surviving Sepsis Campaign Guidelines recommend using dobutamine with norepinephrine or epinephrine alone for patients with septic shock with cardiac dysfunction and persistent hypoperfusion despite adequate fluid resuscitation and stable blood pressure.

View Article and Find Full Text PDF

Mechanical Circulatory support for Septic Shock in Children and Adults: Different but Similar!

Can J Cardiol

December 2024

Senior Consultant Intensive Care, Royal Childrens Hospital, Melbourne, Australia; Professor Department of Critical Care, Faculty of Medicine, Melbourne University.

Whilst Extra-Corporeal Membrane Oxygenation (ECMO) for circulatory support in patients with severe septic shock, commenced in newborn infants and children in the late 1980's, ECMO has remained a controversial treatment for adults with refractory septic shock (RSS). This is fundamentally due to differences in the predominant hemodynamic response to sepsis. In newborn infants and very young children ventricular failure called Low Cardiac Output Syndrome (LCOS) is the major hemodynamic response whilst adolescents and adults have mainly vasoplegic shock.

View Article and Find Full Text PDF

Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis.

J Inflamm Res

December 2024

Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.

Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.

View Article and Find Full Text PDF

BACKGROUND Human metapneumovirus (hMPV), classified in the Pneumoviridae family, is primarily known for causing lower respiratory tract infections in children, the elderly, and immunocompromised individuals. However, rare instances have shown that hMPV can also affect other systems, such as the cardiovascular system, leading to conditions like myocarditis. CASE REPORT We describe a 68-year-old man with a medical history of diabetes, hypertension, and liver cirrhosis who presented to the Emergency Department (ED) exhibiting symptoms of fever, cough, and dyspnea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!