Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the para-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of ortho-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of ortho-phenyl-type radicals from the loss of ortho-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract ortho-Br atoms to generate ortho-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!