ScRNA-seq reveals trained immunity-engaged Th17 cell activation against Edwardsiella piscicida-induced intestinal inflammation in teleost.

Microbiol Res

State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao,  China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China. Electronic address:

Published: December 2024

Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that β-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E. piscicida infection could tune down the activation of intestinal Th17 cells, while β-glucan-training could preserve the potential to amplify and restore the function of intestinal Th17 cells. Moreover, through pharmacological inhibitor treatment, we identify that Th17 cells are essential for ameliorating bacterial infection-induced intestinal inflammation in teleost. Taken together, these results suggest a new concept of trained immunity activation to regulate the intestinal Th17 cells' function, which might contribute to better developing strategies for maintaining gut homeostasis against bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2024.127912DOI Listing

Publication Analysis

Top Keywords

intestinal inflammation
16
infection-induced intestinal
12
intestinal th17
12
th17 cells
12
intestinal
8
inflammation teleost
8
immune cells
8
gut homeostasis
8
homeostasis bacterial
8
bacterial infection
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction.

Cells

December 2024

Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.

Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!