Deep learning enabled in vitro predicting biological tissue thickness using force measurement device.

Comput Biol Med

College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang, 330045, China. Electronic address:

Published: November 2024

Accurate perception of biological tissues (BT) thickness is essential for preliminary evaluation of medical diagnosis and animal nutrition. However, traditional thickness measuring approaches of BT require complex operation, high-cost, and trigger biological stress response. Herein this study, an novel in vitro BT thickness measuring approach integrated with force test system (FST) and the discrete multiwavelet transform convolutional neural network (DMWA-CNN) prediction model based on deep learning are proposed. Simultaneously, several comprehensive experiments and model comparisons are conducted to demonstrate the superiority of the proposed approach. By establishing a DMWA-CNN demonstrates higher estimation accuracy than other traditional algorithm, achieving 100 % accuracy for artificial BT. Moreover, the experimental results indicate that proposed approach is robust to elastic modulus variation (E), external load variation (F), and small thickness differences (T). In addition, four kinds of the pork' thickness are experimentally measured, and the accuracy value is not less than 98.2 %. The thickness of BT determined using the FST and DMWA-CNN algorithm demonstrate potential application in the biomechanical parameter prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109181DOI Listing

Publication Analysis

Top Keywords

deep learning
8
thickness measuring
8
proposed approach
8
thickness
7
learning enabled
4
enabled vitro
4
vitro predicting
4
predicting biological
4
biological tissue
4
tissue thickness
4

Similar Publications

A real-time approach for surgical activity recognition and prediction based on transformer models in robot-assisted surgery.

Int J Comput Assist Radiol Surg

January 2025

Advanced Medical Devices Laboratory, Kyushu University, Nishi-ku, Fukuoka, 819-0382, Japan.

Purpose: This paper presents a deep learning approach to recognize and predict surgical activity in robot-assisted minimally invasive surgery (RAMIS). Our primary objective is to deploy the developed model for implementing a real-time surgical risk monitoring system within the realm of RAMIS.

Methods: We propose a modified Transformer model with the architecture comprising no positional encoding, 5 fully connected layers, 1 encoder, and 3 decoders.

View Article and Find Full Text PDF

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!