Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reconstruction of bone defects has long been a major clinical challenge. Limited by the various shortcomings of conventional treatment like autologous bone grafting and inorganic substitutes, the development of novel bone repairing strategies is on top priority. Injectable biomimetic hydrogels that deliver stem cells and growth factors in a minimally invasive manner can effectively promote bone regeneration and thus represent a promising alternative. Therefore, in this study, we designed and constructed an injectable nanocomposite hydrogel co-loaded with Laponite (Lap) and vascular endothelial growth factor (VEGF) through a simplified and convenient scheme of physical co-mixing (G@Lap/VEGF). The introduced Lap not only optimized the injectability of GelMA by the electrostatic force between the nanoparticles, but also significantly delayed the release of VEGF-A. In addition, Lap promoted high expression of osteogenic biomarkers in mesenchymal stem cells (MSCs) and enhanced the matrix mineralization. Besides, VEGF-A exerted chemotactic effects recruiting endothelial progenitor cells (EPCs) and inducing neovascularization. Histological and micro-CT results demonstrated that the critical-sized calvarial bone defect lesions in the SD rats after treated with G@Lap/VEGF exhibited significant in vivo bone repairing. In conclusion, the injectable G@Lap/VEGF nanocomposite hydrogel constructed in our study is highly promising for clinical transformation and applications, providing a convenient and simplified scheme for clinical bone repairing, and contributing to the further development of the injectable biomimetic hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.150714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!