The outbreak of pneumonia caused by the novel coronavirus (SARS-CoV-2) has presented a challenge to public health. The identification and development of effective antiviral drugs is essential. The main protease (3CLpro) plays an important role in the viral replication of SARS-CoV-2 and is considered to be an effective therapeutic target. In this study, according to the principle of drug repurposing, a variety of antiviral drugs commonly used were studied by molecular docking and molecular dynamics (MD) simulations to obtain potential inhibitors of main proteases. 24 antiviral drugs were docked with 5 potential action sites of 3CLpro, and the drugs with high binding strength were further simulated by MD and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The results showed that the drugs with high flexibility could bind to 3CLpro better than those with low flexibility. The interaction mechanism between antiviral drugs and main protease was analyzed in detail by calculating the root mean square displacement (RMSD), root mean square fluctuation (RMSF) and interaction residues properties. The results showed that the six drugs with high flexibility (Remdesivir, Simnotrelvir, Sofosbuvir, Ledipasvir, Indinavir and Raltegravir) had strong binding strength with 3CLpro, and the last four antiviral drugs can be used as potential candidates for main protease inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2024.108873DOI Listing

Publication Analysis

Top Keywords

antiviral drugs
24
main protease
16
drugs high
12
drugs
9
interaction mechanism
8
mechanism antiviral
8
drugs main
8
novel coronavirus
8
molecular docking
8
docking molecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!