Validation of finite-element-simulated orthodontic forces produced by thermoplastic aligners: Effect of aligner geometry and creep.

J Mech Behav Biomed Mater

Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Published: December 2024

Purpose: Finite element (FE) models for determining the orthodontic forces delivered by clear aligners often lack validation. The aim of this study was to develop and validate accurate FE models for clear aligners, considering the small but important geometrical variations from the thermoforming process and the creep behavior of the aligner material.

Methods And Materials: The tooth misalignment considered was a 2.4° torque aberration (rotation about the mesial-distal axis at the level of the center of resistance) of the maxillary left central incisor. FE models were created from Micro-CT scans of a model dental arch and five nominally identical aligners with the aforementioned misfit. Fitting of the aligners onto the dental arch was simulated using Abaqus's Interference Fit function, followed by surface-to-surface frictional interaction. Stress relaxation of the aligner material was measured using double-cantilever beam bending and modeled with a Prony series. The assembled FE models were validated by comparing the predicted forces and moments delivered to the maxillary left central incisor with experimental data, obtained with a custom-built but fully calibrated apparatus.

Results: Good agreement between prediction and measurement was obtained for both the short- and long-term forces and moments. In the short-term, i.e., after 30 s, the dominant force in the labial-lingual direction had a maximum difference of 2.9% between experiment and simulation, and the dominant moment about the mesial-distal axis had a maximum difference of 8.3%. In the long-term, i.e., after 4 h, the experimental and numerical forces had a maximum difference of 8.4%. There were statistically significant differences in the forces delivered among the nominally identical aligners, which were predicted by the geometrically accurate FE models and attributed to the variations in the points of contact between the aligners and the dental arch. The decay in force applied was affected by both the viscoelastic material behavior and friction between the aligner and arch.

Conclusion: For accurate prediction of the forces and moments delivered by thermoplastic aligners, FE models that can accurately capture the point contacts between the aligners and the underlying teeth are essential. Stress relaxation of the aligners could be adequately modeled using the Prony series to represent the temporal changes of their elastic modulus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106755DOI Listing

Publication Analysis

Top Keywords

dental arch
12
forces moments
12
maximum difference
12
aligners
10
orthodontic forces
8
thermoplastic aligners
8
forces delivered
8
clear aligners
8
accurate models
8
mesial-distal axis
8

Similar Publications

Background/purpose: The performance of intraoral scanners (IOSs) relies on the operator's skills. However, whether operator experience influences IOS accuracy remains unclear. This study investigated the effect of operator experience on the trueness accuracy and time-based efficiency of IOSs.

View Article and Find Full Text PDF

Introduction: The prevalence of maxillofacial fractures is rising due to increased road traffic accidents, necessitating prompt and effective management, especially in cases of panfacial fractures. The primary objective in treating such fractures is to restore occlusion and stabilize midface buttresses and pillars.

Case Report: This article presents the case of a 56-year-old male who sustained panfacial fractures following a road accident, exhibiting symptoms including facial pain and nosebleeds.

View Article and Find Full Text PDF

Aim: Fixed retention is the method of choice for permanent stabilization of the treatment outcome. In recent years, CAD/CAM techniques have been developed to produce retainers with high precision and tension-free fit. The aim of this retrospective study was to evaluate the suitability of a semi-industrial retainer manufacturing process (office-based construction, external laboratory manufacturing) in terms of positioning accuracy and post-treatment changes.

View Article and Find Full Text PDF

This case report presents an atypical transverse cervical artery with its detailed anatomy, morphogenesis, and association with the high arch-shaped subclavian artery. The atypical arteries, related arteries, and adjacent cervical and brachial plexuses were macroscopically examined in a 98-year-old Japanese female cadaver donated to The Nippon Dental University for medical education and research. The atypical deep branch of the transverse cervical artery originated from the internal thoracic artery and passed through between the C5 and C6 roots, in close contact with the C5 and C6 junction, to reach the dorsal side of the brachial plexus.

View Article and Find Full Text PDF

Lingual Arch-supported Open Coil Space Regainer.

Int J Clin Pediatr Dent

December 2024

Department of Orthodontics and Dentofacial Orthopedics, JMF's ACPM Dental College, Dhule, Maharashtra, India.

Aim And Background: The lingual arch has been widely used as a space maintainer in the lower arch during the mixed dentition phase, and the open-coil space regainer (OCSR) has been used for localized space regaining. However, an appliance consisting of both has not been previously documented. This case report highlights the advantages of using a lingual-arch-supported OCSR for regaining lost space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!