AI Article Synopsis

  • The invention of surgical robots improved the accuracy of component placement in total hip arthroplasty (THA), but a tailored preoperative planning method for cup alignment based on individual patient activity is still needed.
  • This study developed a kinematic-kinetic compliant (KKC) method for positioning the acetabular cup, utilizing preoperative gait analysis, musculoskeletal modeling, and CT images to ensure optimal alignment and minimize complications like edgeloading and impingement.
  • Validation of the musculoskeletal model showed that predicted muscle activations aligned with measured data, yet the recommended cup orientations sometimes fell outside the traditional safe zone, underscoring the need for personalized surgical planning.

Article Abstract

The invention of the surgical robot enabled accurate component implantation during total hip arthroplasty (THA). However, a preoperative surgical planning methodology is still lacking to determine the acetabular cup alignment considering the patient-specific hip functions during daily activities such as walking. To simultaneously avoid implant edgeloading and impingement, this study established a kinematic-kinetic compliant (KKC) acetabular cup positioning method based on preoperative gait kinematics measurement and musculoskeletal modeling. Computed tomography images around the hip joint and their biomechanical data during gait, including motion tracking and foot-ground reaction forces, were collected. Using the reconstructed pelvic and femur geometries, the patient-specific hip muscle insertions were located in the lower limb musculoskeletal model via point cloud registration. The designed cup orientation has to be within the patient-specific safe zone to prevent implant impingement, and the optimized value selected based on the time-dependent hip joint reaction force to minimize the risk of edgeloading. As a validation of the proposed musculoskeletal model, the predicted lower limb muscle activations for seven patients were correlated with their surface electromyographic measurements, and the computed hip contact force was also in quantitative agreement with data from the literature. However, the designed cup orientations were not always within the well-known Lewinnek safe zone, highlighting the importance of KKC surgical planning based on patient-specific biomechanical evaluations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.112332DOI Listing

Publication Analysis

Top Keywords

acetabular cup
12
kinematic-kinetic compliant
8
cup positioning
8
based preoperative
8
motion tracking
8
musculoskeletal modeling
8
total hip
8
hip arthroplasty
8
surgical planning
8
patient-specific hip
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!