The impact of a liquid drop on a granular medium is a common phenomenon in nature and engineering. The possible splashing droplets and ejected particles could pose a risk of pathogen transmission if the water source or granular medium is contaminated. This work studies the liquid drop impact on the granular medium using high-speed photography and considers the effects of liquid properties, drop impact characteristics, and granular medium properties. Four flow regimes, including direct penetration, prompt splashing, spreading, and corona splashing, are observed and a regime map is created to identify their thresholds. The spreading regime can eject a large number of particles, and the corona splashing regime can produce splashing droplets in addition to the ejected particles. For the splashing droplets, their median diameters and velocities are in the ranges 0.11 to 0.21 and 0.15 to 0.37 of the diameter and velocity of the impact drop, and their median splashing angles range from 14° to 27°. Two particle ejection mechanisms are observed, falling squeeze and forward collision, driven by the collapsing and forward spreading of the liquid lamella, respectively. The particles ejected by the latter mechanism have larger ejection velocities, angles and distances from the impact center, which can facilitate their long-range transmission. In addition, the process of spreading and retracting of the lamella formed by the drop impact is also studied, and it is found that the maximum spreading diameter of the lamella is proportional to the crater diameter. These results improve the understanding of the phenomenon after the drop impact on the granular medium and the characteristics of the splashing droplets and ejected particles, contributing to the prediction and risk assessment of contaminated particle transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122486 | DOI Listing |
J Small Anim Pract
January 2025
Polo Oncologico Veterinario, AniCura Italy Holding S.r.l., Bologna, Italy.
Primary uterine lymphoma is an extremely rare disease. An 11-year-old spayed female domestic short-haired cat presented with a 3-month history of mucopurulent vaginal discharge, lethargy, acute vomiting and constipation. Physical examination revealed vulvar swelling, purulent discharge and a mass in the mid-caudal abdomen.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.
The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.
View Article and Find Full Text PDFProtist
December 2024
Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea. Electronic address:
This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea.
View Article and Find Full Text PDFPlant Dis
December 2024
Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, China;
Litsea cubeba (Lour.) Per., named as May Cang, is a rare deciduous evergreen tree and cultivated for its ethnopharmacological properties and medicinal uses.
View Article and Find Full Text PDFChemosphere
February 2025
University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA. Electronic address:
Granular activated carbon (GAC) is widely used to treat contaminated per- and polyfluoroalkyl substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that need to be landfilled or regenerated. A novel modified supercritical CO (scCO) extraction for regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the procedure yielded >99% perfluorooctanoic acid (PFOA) desorption after a 60-min treatment in a continuous flow reactor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!