A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogen bond-induced supramolecular self-assembly strategy to fabricate ultra-dispersed Cu-loaded porous tubular graphitic carbon nitride with rich nitrogen vacancies and CuN sites for efficient photo-Fenton catalysis. | LitMetric

Hydrogen bond-induced supramolecular self-assembly strategy to fabricate ultra-dispersed Cu-loaded porous tubular graphitic carbon nitride with rich nitrogen vacancies and CuN sites for efficient photo-Fenton catalysis.

J Colloid Interface Sci

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China. Electronic address:

Published: January 2025

The low utilization of visible light and easy recombination of charge carriers of graphitic carbon nitride (CN) restrain its application as photo-electron donor and metal site support in photo-Fenton system. Herein, a hydrogen bond-induced supramolecular self-assembly strategy was created to fabricate an ultra-dispersed Cu-loaded porous tubular CN composite (CA-Cu/TCN) by the hydrothermal-pyrolysis method with citric acid (CA) as initiator and chelating agent. CA-Cu/TCN with rich nitrogen vacancies (NVs) and abundant ultra-dispersed CuN sites exhibited narrow bandgap, favorable visible light absorption capability, and high separation and transfer efficiency of charge carriers. CA-Cu/TCN effectively catalyzed the activation of HO for generating abundant reactive oxygen species under visible light irradiation, contributing to efficient degradation of ciprofloxacin (CIP) with removal rate of 95.9 % and kinetic rate constant of 0.0948 min. The superior catalytic activity of CA-Cu/TCN can be ascribed to the effective transport of photogenerated electrons, high specific surface area, atomically dispersed Cu species, and enriched surface NVs. The mechanism of photo-Fenton catalytic degradation of CIP and possible degradation pathways were proposed as the dominant role of O. Toxicity evaluation of CIP and intermediates indicated that the degradation of CIP was a gradual detoxification process. This work offers a novel self-assembly strategy to design and synthesize highly active and sustainable visible light-driven photo-Fenton catalysts for effectively degrading organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.173DOI Listing

Publication Analysis

Top Keywords

self-assembly strategy
12
visible light
12
hydrogen bond-induced
8
bond-induced supramolecular
8
supramolecular self-assembly
8
fabricate ultra-dispersed
8
ultra-dispersed cu-loaded
8
cu-loaded porous
8
porous tubular
8
graphitic carbon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!