A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers. | LitMetric

PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers.

Biomed Pharmacother

Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy. Electronic address:

Published: November 2024

Purpose: This research investigates the role of PPARγ in the complex molecular events underlying the acquisition of resistance to tamoxifen (Tam) in luminal A breast cancer (BC) cells. Furthermore, it focuses on evaluating the possibility of repurposing Imatinib mesylate, an FDA-approved anticancer agent recently recognized also as a PPARγ antagonist, for the personalized therapy of endocrine-resistant BC with increased PPARγ expression.

Methods: Differential gene expression between parental and Tam-resistant MCF7 cells was assessed by RNA-seq followed by bioinformatics analysis and validation by RT-qPCR. PPARγ was downregulated by esiRNAs or inhibited by the antagonist GW9662. Cell viability and proliferation were measured by MTT and colony formation assays. Spheroids were prepared from parental and Tam-resistant MCF7 cells. Other luminal A BC cell lines resistant to Tam were generated.

Results: In MCF7-TamR cells, PPARγ and several of its target genes were significantly upregulated. Increased PPARγ expression was due to the modulation of its positive/negative transcriptional regulators. Downregulating PPARγ with esiRNAs or GW9662 effectively killed parental and Tam-resistant cells and spheroids. Imatinib revealed to be as effective as GW9662 in restoring Tam susceptibility of these cells. PPARγ overexpression was also observed in the newly-selected Tam-resistant luminal A BC cells, in which GW9662 and Imatinib restored their susceptibility to Tam.

Conclusion: Our findings demonstrate that the overexpression of PPARγ is a frequent occurrence during acquisition of Tam resistance in luminal A BC cells, and that PPARγ antagonism represents an alternative therapeutic approach for the personalized treatment of BC showing dysregulation of this nuclear receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117461DOI Listing

Publication Analysis

Top Keywords

parental tam-resistant
12
cells pparγ
12
pparγ
11
pparγ antagonism
8
resistance luminal
8
luminal breast
8
cells
8
increased pparγ
8
tam-resistant mcf7
8
mcf7 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!