Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cross-coupling reactions for constructing C-N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C-N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C-N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C-N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C-N coupling reactions using solvated electrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!